4. Сделать им «клоуна»!

We use cookies. Read the Privacy and Cookie Policy

4. Сделать им «клоуна»!

«Клоун» — удар в глаз (жаргон шпаны).

…Говорят, ничего не боятся только пьяные да сумасшедшие. Знавала новейшая история и президента, часто пребывавшего в первом из упомянутых состояний и министра обороны, сиганувшего из окна с «поехавшей крыши». Но не была нажата кнопочка— может, мелковата оказалась для трясущегося пальца, а может, даже и плотно задрапированное сознание противилось, чтобы впечатления от земной жизни завершились ощущениями крепкой встряски от близкого взрыва заглубленного ядерного заряда и легких покалываний по всему телу — вялой и последней реакции организма на очень большую дозу проникающей радиации.

Но грохотать-то вокруг продолжало и без ядерного оружия, а обходились без него потому, что начала постепенно сбываться мечта о волшебной шпаге. Не жалкую сотню ядерно-рентгеновских килождоулей несла волшебница на острие, а в миллионы раз больше — в обычной взрывчатке, и входила она с таким подарком прямо в дверь того же бункера или подносила его танку (рис. 4.1). В море образцов высокоточных боеприпасов можно купаться (рис. 4.2), но надо помнить об обещании читателю: не перегружать книгу перечислением типов и характеристик.

Рис. 4.1

Верхний снимок: управляемая ракета «Мейврик» поражает высокозащищенное укрытие. В центре: попадание в танк оперативно-тактической ракеты 9К79 «Точка». Нижние снимки: поражение самолета в укрытии управляемой бомбой GBU-39 с проникающей боевой частью

…И алкали многие славы офтальмологов (рис. 4.3): «Патриот может видеть! РЭНТЭК (компания, производящая электронику) сделала его зрячим!», и под снимком ракеты, устремившейся на перехват — втискивали фото большой интегральной схемы, той, что посылает команды на рули, задающие курс, крен и рысканье.

Рис. 4.2

Верхний снимок: среди высокоточных боеприпасов. База ВВС США Эглин, 1999 г. Современные технологии позволяют превратить и устаревшие снаряды и свободнопадающие бомбы в управляемые. На нижней серии снимков: на полетной палубе авианосца команда оружейников, ввинтив в свободнопадаюшую бомбу вместо взрывателей стальные штанги, готовится поднатужиться и подвесить изделие к самолету; когда вместо штанги в очко под головной взрыватель будет ввернут блок управления, бомба приобретет способность наводиться на указанную лазерным лучом цель. Аналогичная технология разработана и для артиллерийских боеприпасов (правый снимок)

Правда стал перехват менее зрелищным: не слепящие ядерные космы в полнеба, а неяркая вспышка (рис. 4.4), потому что не термоядерный заряд уничтожал боевой блок, а развернувшаяся вблизи от цели стальная пружина резала все встреченное на пути.

Рис. 4.3

Пуск управляемой ракеты MIM-104 зенитно-ракетного комплекса «Пэтриот»

… И забивали баки тем офтальмологам энтомологи, сооружавшие совсем уж ничтожных нанотехнологических роботов-инсектов (рис. 4.5), чтобы те, подобно неприличным паппараци, нагло высматривали своими миниатюрными камерами сокровенное, не для чужих глаз предназначенное…

…В популярных изданиях принято приводить бросающиеся в глаза сравнения — чтобы оживить изложение, сделать его более запоминающимся. Не без зависти, цитирую: «Современная электроника в состоянии зарегистрировать электромагнитные волны мощностью еще меньшей той, что развивает муха, поднимаясь в течение ста лет на один сантиметр».

Рис. 4.4

Повышение точности систем наведения позволяет реализовать безъядерный перехват боевого блока. Верхний ряд, слева направо:

—старт и маневр противоракеты, снятые камерой с открытым затвором;

—инфракрасная система наведения позволяет с высокой точностью вывести ракету на курс перехвата;

—вблизи цели обтекатели сбрасываются и разворачивается, до этого момента

—свернутый, кинетический перехватчик.

Нижний снимок: столкновение с таким перехватчиком, на скорости около 10 км/с, гарантированно уничтожает боевой блок

Сложно удержаться от восхищения ярким образом, хотя из него следует и некомплиментарный вывод: всякое устройство имеет пределы работоспособности, и если регистрируемая им в нормальном режиме мощность очень и очень мала, то мощность сигнала, который оно «не вынесет» и выйдет из строя, тоже не слишком велика. Образно говоря — достаточно бросить горстку песка, чтобы настроенная крайне патриотически, но ничего не «видящая» дура, весом более тонны, с обиженным ревом пронеслась мимо, оставив, как напоминание о себе, лишь зловоние сгоревшего смесевого топлива. Ну а механической мухе — не песка, а ничтожной песчинки надо, чтобы, забыв о постыдных порнографических экзерсисах, хлопнулась неслышно она на спинку и, посучив конвульсивно крылышками из полиэтилен-терефталата, затихла навсегда…

Рис. 4.5

Такие нанотехнологические роботы-разведчики уже разрабатываются и должны начать жужжать, выполняя свои миссии к 2015 г.

…Обретение радиочастотным электромагнитным излучением (РЧЭМИ) свойств поражающего фактора произошло как в результате создания мощных его источников, так и эволюции элементной базы электроники: на смену лампам, которые невозможно «сжечь», пришли микросхемы, размеры полупроводниковых элементов в которых непрерывно уменьшаются и в настоящее время составляют доли микрона. Между тем, понятно, что, с уменьшением размеров полупроводниковых элементов, снижается и их стойкость к токовым перегрузкам, так что появление и совершенствование ЭМО противостоит этой тенденции, которая в первую очередь и обеспечивает быстрый рост функциональных возможностей ЭС. полупроводники. Платой за колоссально возросшие функциональные возможности стала повышенная уязвимость электроники к токовым перегрузкам. В результате, при действии по целям, в состав которых входят современные электронные средства, РЧЭМИ значительно превосходит по энергетической эффективности ударную волну и осколки. Например, стойкий функциональный отказ крылатой ракеты происходит при воздействии одного из поражающих факторов со следующими значениями плотности энергии (Дж/м2):

• осколки весом не менее одного грамма каждый — 100000;

• воздушная ударная волна— 50000;

• РЧЭМИ микросекундной длительности — 1-10.

Повышение степени интеграции, дальнейшая миниатюризация полупроводниковых элементов означают, что такие элементы будут становиться все менее стойкими к токовым перегрузкам. Так что РЧЭМИ — эффективный поражающий фактор, когда речь идет о целях, в состав которых функционально входит электроника: сама угроза его боевого применения встает на пути миниатюризации — основной тенденции развития электронных средств.

Есть у РЧЭМИ и недостатки: с хранением не только излучения, а и электромагнитной энергии других видов дело обстоит неблагополучно. Так, например, в заряженном высоковольтном конденсаторе максимальная плотность электрической энергии не превышает десятых долей джоуля на кубический сантиметр, и хранится она недолго; ваккумуляторе или в ионистере (конденсаторе сверхбольшой емкости) плотность энергии повыше, но ее нельзя извлечь быстро — за миллионные доли секунды. Так что энергию приходится «доставать» из других «хранилищ» и уж затем преобразовывать ее в электромагнитную; при этом не избежать существенных потерь, и потому итоговые эффективности электромагнитного и традиционного оружия отличаются не так разительно, как эффективности отдельно взятых поражающих факторов.

«Хорошие» хранилища энергии существуют: это те же взрывчатые вещества. Но если появление электроники привело к качественному скачку в боевых возможностях оружия, то скачка в характеристиках взрывчатых веществ не произошло: «на арену» вышел лишь октоген, превосходящий гексоген всего-то на несколько процентов по энергосодержанию. Дело в том, что, в соответствии со вторым началом термодинамики, любая реакция с выделением энергии самопроизвольно протекает всегда и ВВ не могут не разлагаться.

«Начало» ничего не сообщает о скорости такой реакции, но вариантов достаточно. Если вещества много, а начальный импульс существенен — возможна детонация или горение (взрывное или довольно вялое). Если возмущения нет — все зависит от условий хранения. Иногда признаки разложения могут не быть заметны в течение сотен лет; бывает, что увеличивается чувствительность к удару или трению, а иногда продукты разложения ускоряют распад и все заканчивается самовоспламенением и взрывом. Требование стабильности ограничивает плотность химической энергии и в современных ВВ она не превышает 10000 Дж/куб. см [75]. Может быть, и можно синтезировать более мощное вещество, но чувствительность и стойкость его будут такими, что к нему небезопасно станет приближаться.

… Из многих тысяч взрывчатых соединений отобрано всего несколько таких, которые сравнительно стабильны, но достаточно действенны при возбуждении детонации. На их основе созданы разнообразные взрывчатые материалы. В годы «холодной войны» в «быках» многих стратегически важных мостов в Западной Европе были блоки, наполнителем бетона которых служил октоген: марш численно превосходящих советских танковых соединений рассчитывали остановить, не тратя драгоценное время на заложение зарядов, а только — прилепляя куски пластита с детонаторами на известные саперам участки опор. Из композиций на основе октогена горячим прессованием получают прочные заряды ВВ — в них можно нарезать метчиком резьбу, и она будет хорошо держать винт. Правда, изготовление пресс-форм сложно, и иногда применяют менее энергоемкие литьевые составы. Используя вязкие присадки, можно получить и эластичные (с консистенцией латекса — мягкой резины) и пластические взрывчатые материалы (с консистенцией детского пластилина) — еще менее мощные. К тому же скорость их детонации не очень стабильна, потому что технологически сложно добиться идеально-однородного перемешивания связки и наполнителя. Эластичный состав с высокостабильной скоростью детонации создали, не тупо, час за часом, перемешивая компоненты, а — подбирая характеристики ударного сжатия наполнителя и связки. Если скорости звука в связке и в продуктах детонации наполнителя будут близки, то и скорость звука в их смеси не будет зависеть от отклонений в соотношении компонент, а значит, скорость детонации будет постоянна [76]. Такая пара была подобрана: нитрат многоатомного спирта и один из видов синтетического каучука.

Скорость детонации этого состава менее 8 км/сек, (октогена — более 9 км/сек), но создан такой эластит (рис. 4.6) не ради получения рекордных параметров взрыва, а для детонационной автоматики, где главное — максимальная стабильность характеристик. Этот состав и используется в детонационных разводках ядерных зарядов, описанных в главе 3, и именно использование таких разводок позволило уменьшить диаметр заряда более чем на порядок, в чем можно убедиться, сравнив снимки: «Толстяка», (рис 3.32) и артиллерийского снаряда (рис. 3.50).

Гарантированный срок службы ВВ — чуть более десятилетия, но фактически взрывчатые свойства сохраняются значительно дольше: даже снаряжение пролежавших более чем полвека в земле боеприпасов (рис. 4.7) демонстрирует образцовое дробление корпуса.

Рис. 4.6

Верхний ряд: американский листовой эластичный взрывчатый материал «деташит» с постоянной скоростью детонации. По требованию заказчика, в него могут быть добавлены красители разных цветов. Тот же ВМ выпускается в шнуровом варианте («детафлекс»), в пластиковой оплетке или без нее (центральный ряд), а также — в виде тонких (0,5 мм) лент (нижний ряд, слева). Для промышленных целей выпускаются жидкие взрывчатые материалы (правее). Их, например используют для извлечения взрывом обломков сверл, застрявших в заготовках. Бинарные ВМ (справа) повышают безопасность: они приобретают взрывчатые свойства, только когда смешивают их компоненты, по отдельности к взрывному разложению не способные

Объяснить, как из хранимой в ВВ химической энергии получают электромагнитную, невозможно, обойдя вниманием важнейшую физическую величину — магнитный поток, потому что именно ее «поведение» позволяет понять многое в этом процессе.

Рис. 4.7

Обнаруженная в середине 90-х годов и уничтоженная подрывом мина к 82-мм миномету, произведенная в 1939 году (слева). Дилетантам нельзя «оприходовать» и даже трогать такие находки, потому что их взрыватели были взведены при выстрелах и неизвестно, какая малость помешала им сработать.

Нечего и говорить, что обезвреживание боеприпасов, особенно, мин — весьма опасная задача. Некоторые саперы полагаются в их поиске не на индукционными миноискатели, а на чувствительное обоняние… прирученных крыс (справа)

Магнитным потоком Ф через данную поверхность называется число линий вектора В (индукции магнитного поля), пересекающих эту поверхность. Если вектор В всюду нормален к поверхности (площадью S) и имеет постоянное значение во всех ее точках, магнитный поток равен: Ф = BS. Поведение потока, как и все электромагнитные явления, определяется уравнениями Максвелла, но обобщенное описание на неспециалиста способно навеять лишь скуку, поэтому рассмотрим частный случай, когда по периферии такой поверхности располагается проводящая среда, а в центре — непроводящая (рис. 4.8). Проводимость сильно влияет на подвижность магнитного поля: оно «занимает» область в вакууме или диэлектрике со скоростью света, а в проводящей среде движется тем медленнее, чем выше проводимость. Так, за микросекунду оно проникает, например, в медь на глубину в десятки микрон (характерная скорость — всего лишь десятки метров в секунду). При этом в окружающей поток проводящей среде обязательно протекает и ток — эти величины неразрывно связаны, так что потоку можно дать и другое определение: это произведение индуктивности L контура на ток I, протекающий в нем (Ф = IL). Допустимо, рассматривая магнитный поток, «преобразовать» контур, «завив» его в несколько витков; можно поступать и наоборот, «разворачивая» витки.

При деформации контура поток сопротивляется таким попыткам тем энергичнее, чем он свободнее, отвечая на стремление изменить себя генерацией ЭДС, препятствующей этому [77]. Например, если сжать контур, то благодаря такой ЭДС в нем возрастут и ток и индукция поля, компенсируя уменьшение площади. Если же попытаться «разорвать» контур и «выпустить» поток, он отреагирует на это, опять же — генерируя ЭДС, чтобы пробой замкнул разрыв.

Рис. 4.8

Равенство значений магнитного потока в контуре, «свернутом» в пару витков и в том же, но «развернутом» контуре. В первом случае магнитный поток равен тройному произведению: индукции магнитного поля на площадь витка и на число витков; во втором — той же индукции на общую площадь контура (равную удвоенной площади одного витка)

Несмотря на «заботу» потока о самосохранении, полностью ему удается достичь этого лишь в контуре из сверхпроводника. В обычные же металлы магнитное поле частично или полностью проникает. «Увязшее» в проводнике поле лишается подвижности и не участвует в процессах преобразования энергии, а только нагревает проводник. Глубину проникновения называют скин-слоем, и зависит она, помимо проводимости, от частоты тока или от длительности импульса переменного во времени поля. Распределение индукции поля по толщине скин-слоя неравномерно (описывается уравнением диффузии).

Из рис. 4.8 ясно, что при прочих равных условиях потери такого рода тем выше, чем на большей длине провода (или числе витков) происходит диффузия поля. Так что если задумано для усиления тока и магнитной энергии сжать контур, то делать это надо быстро, чтобы существенная часть потока в нем сохранилась свободной: чем она больше, тем выше «качество» процесса сжатия.

Правда, не всегда из сохранения потока надо «делать культ»: величина тока неразрывно связана с индукцией магнитного поля, создаваемого этим током, а эта связь влечет за собой и другую — магнитного потока с магнитным моментом. Модуль последней величины равен произведению площади, охватываемой контуром, на ток в нем (М = IS). Второй производной магнитного момента по времени пропорциональна мощность электромагнитного излучения и связь магнитного потока и магнитного момента приводит к тому, что для контура, в котором магнитный поток изменяется несущественно (магнитное поле квазистационарно), незначительно меняется и магнитный момент, а значит — излучение пренебрежимо, даже если магнитная энергия в контуре очень велика. Один из способов получить излучение — «выпустить» [78] магнитный поток, что не всегда проходит безнаказанно: так, юный Адя Сахаров, без всяких мыслей об излучении, отключил руками батарейку от игрушечного электромотора. Напряжение батарейки мало, но, из-за большого числа витков обмотки, магнитный поток (произведение тока на индуктивность) был заметным и он индуцировал в контуре ЭДС, направленную так, чтобы изгнанию потока воспрепятствовать. Эта ЭДС, равная отношению величины подвергнутого остракизму [79] потока ко времени, за которое произошел разрыв, и «дернула» естествоиспытателя.

Ну а позже Сахаров и американец Макс Фаулер прославились изобретением устройств для преобразования энергии взрыва в электромагнитную — таких, в которых магнитный поток сжимается, а не выпускается.

Сам Андрей Дмитриевич отмечал, что мысли о возможности магнитной кумуляции (МК) еще раньше высказывались Я. Терлецким и В. Аркадьевым, но: «осуществление культуры МК стало возможным лишь тогда, когда возникла определенная культура обращения со сложными зарядами ВВ — кумулятивными, которые появились только во время Второй мировой войны, взрывными линзами (тогда же), с имплозивными зарядами. По существу, именно объект (имеется в виду центр разработки ядерного оружия — ВНИИ экспериментальной физики в г. Саров, ранее известный, как Арзамас-16) и ему подобные учреждения были наиболее подходящими для этих работ. В делах такого рода осуществление идеи — это даже не полдела, а все 99 %».

Следует добавить, что чрезвычайно важно представлять и порядки величин, существенных для реализации идеи. У Сахарова было и это преимущество, потому что в годы войны он был одним из создателей прибора для контроля бронебойных сердечников на патронном заводе. В основу работы этого прибора был положен скин-эффект.

Фаулер — в США и Сахаров — в СССР предложили сжать взрывом металлическую трубку (лайнер), в которой заранее создавалось магнитное поле (рис. 4.9). Чтобы «впустить» внешнее поле, лайнер вначале делали разрезным (взрыв «захлопывал разрез»), но последующее сжатие происходило неравномерно, поэтому позже стали навивать катушку из множества изолированных проводков (рис. 4.10), изоляция которых передавливалась при взрыве.

Рис. 4.9

Предложенный А. Сахаровым и М. Фаулером метод сжатия магнитного поля лайнером под действием давления взрыва

Если сжатие лайнера такого имплозивного взрывомагнитного генератора (ИВМГ) происходит быстро, то большая часть потока не успевает уйти в проводник и индукция магнитного поля внутри лайнера «вынуждена» возрастать, чтобы компенсировать убывание площади сечения:

Е = E0 (S0/S)?2

Ток I и магнитная энергия Е также при сжатии усиливаются, что следует из определения потока: I = I0(L0/L)?2 = I0(S0/S)? и Е = Е0(L0/L)? , где подстрочные символы относятся к начальным значениям, а ? — доля потока, оставшегося свободным, не связанным в металле (коэффициент сохранения).

Существуют работы, посвященные расчету сохранения магнитного потока в ИВМГ, но автор не очень им доверяет, предпочитая определить все, что нужно, из осциллограмм. Чтобы объяснить, что это такое, не обойтись без экскурса в политику…

Рис. 4.10

Схема имплозивного взрывомагнитного генератора (ИВМГ). Через катушку 1, свитую из множества параллельно соединенных между собой проводков, пропускается ток от разряда конденсатора 2. Проволочки изолированы, поэтому поле свободно проникает как между витками, так и проволочками обратного токопровода. Когда ток запитки близок к максимуму, срабатывает цилиндрическая детонационная разводка 3. Она значительно проще сферической, описанной в предыдущей главе (из рисунка видно, какими элементами она образована), точек инициирования в ней — несколько десятков. В кольце мощного взрывчатого вещества 4 формируется сходящаяся детонационная волна, которая, достигнув катушки, сдавливает витки. Изоляция проволок при сдавливании перемыкается и далее взрывом сжимается просто трубка из металла (лайнер) и находящееся в ней поле.

На оси — катушка для измерения производной индукции магнитного поля. Если сигнал с нее интегрируется, то получается осциллограмма тока или напряженности поля (справа), если нет — их производных. Сначала видна синусоида тока разряда конденсатора, создающего начальное поле (участок «а»); когда ток максимален, взрыв замыкает витки катушки и сжимает ее к оси, значительно увеличивая индукцию поля внутри лайнера (участок «б»). Нелинейность сигнала на участке «б» вызвана тем, что летящий лайнер «дышит»: в нем «гуляют» волны сжатия и разрежения

Понимаю, как возмущает многих нигилизм, все эти неприличные намеки насчет руководящих товарищей, пекущихся о народном благе. Создается ложное впечатление, что суетятся в науке одни фрондеры, высмеивающие идеи, ниспосланные сверху. Так нет же, подобно «свинье под дубом вековым» из басни Крылова, пробавляются насмешники теми идеями!

…Вспомним, как доходчиво и красочно представляют на графиках наше с вами благосостояние. По оси абсцисс — годы, годы… Но взметнулась вверх красная кривая и сучит по экрану указочка, или — пляшет лазерный зайчик: сейчас вот — да, не очень, но посмотрите: через пару-тройку годков скакнет в разы, а через десять-то — ой, «запируем на просторе!»

… Опыт готовят долго, но вот датчики и кабели подсоединены, и всех загнали в бункер. Кнопка нажата; на взрыв не смотрят, это опасно. Видна отраженная от стен вспышка. Через доли секунды воздух на мгновение становится тугим и бьет по ушам. Близкая детонация разгоняет соломинку так, что она втыкается в сталь. На дистанции около метра от взрыва поток газов до песчинки счищает почву с корня дерева (иногда этим пользуются, оставляя вблизи заряда «сувениры»; при инструктаже невредно напомнить, что так же чисто могут быть «обдуты» и мышцы с кисти руки). Наконец, гром взрыва умирает, сделав слышным тихий шелест летящих осколков — остатков того, что еще несколькими мгновениями ранее было генератором, собранным вашими руками. Первый взгляд — на осциллографы: есть ли сигналы от датчиков тока.

Осциллограф — главнейший в экспериментальной физике прибор. Тонкий луч непрерывно эмитируемых в его трубке электронов вызывает свечение в той точке экрана, на которую он падает. По горизонтали отклоняет этот луч одна пара пластин, на которую подается возрастающее во времени напряжение, и пробегает он равномерно сантиметры экрана, только не за годы, а за микросекунды. А на вертикальную пару пластин подается напряжение исследуемого сигнала. Нет сигнала — и ровную линию прочертит осциллограф. Есть сигнал — и получи?те осциллограмму — объективное свидетельство развития во времени процесса, который вы исследуете. И если все подключено правильно, не сомневайтесь: осциллограмма — не партийная программа (хорошо сформулировал, в рифму!).

Вот и подал автор на вход осциллографа сигнал с пробной катушки, размещенной на оси устройства. В опыте, при сжатии лайнера в полтора раза (от 45 мм до 30 мм) магнитный поток уменьшился всего на 9 % от того, который был создан разрядом конденсатора.

От этого ИВМГ требовалась высокая скорость схождения лайнера, а потому катушка, из которой он образовался, была намотана алюминиевыми, а не медными проводками: ради скорости метания проводимость была принесена в жертву. Сохранение потока и так было достаточным, поскольку представляла интерес ранняя стадия сжатия, на которой еще не слишком развиты нестабильности на внутренней поверхности лайнера.

Каждый видел, по крайней мере — по телевидению, «кусты» разрывов — это и есть нестабильности. Весьма наглядна и фотографии 2.6, 2.9: слой песка, метаемый взрывом бомбы, вырождается в струи, летящие в воздухе.

Нестабильности развиваются при большой разнице в плотности движущегося вещества и среды, где происходит его движение. Именно такое соотношение и имеет место в ИВМГ: лайнер из металла движется в воздухе. На кадрах высокоскоростной съемки (рис. 4.11) видно, как на внутренней поверхности лайнера начинают расти «пальцы», а потом образуется «звезда», разрезающая объем сжатия, на чем процесс усиления поля и заканчивается. В опытах автора (о них речь впереди) лайнер выполнял две функции, причем главной являлось формирование ударной волны при ударе лайнера о цилиндрическое тело. Ударной волне тоже следовало быть цилиндрической, а, значит, в лайнере — недопустимы значительных размеров нестабильности. «Поджатие» же поля было приятным, но не решающим обстоятельством.

Рис. 4.11

Процесс развития нестабильностей в лайнере ИВМГ. Со временем (интервал между снимками 1,6 мкс) внутренняя поверхность лайнера из цилиндрической становится звездообразной

Привыкшие достигать совершенства, специалисты ВНИИЭФ добились того, что в кинетическую энергию лайнера передавалось до 30 % химической энергии ВВ (теоретически возможный уровень — 32 %). Но химическая энергия распределена по большому объему заряда ВВ, а кинетическая энергия лайнера в конце процесса кумулируется в полости небольших размеров, что и позволило достигнуть рекордного значения плотности энергии магнитного поля (4·107 Дж/см3), на несколько порядков превышающего плотность химической энергии в бризантных ВВ.

Но даже если подавить нестабильности, лайнер все равно будет остановлен магнитным давлением: оно возрастает быстрее, чем гидродинамическое давление в его веществе. Площадь области, охватываемой лайнером, убывает обратно пропорционально квадрату радиуса, а значит, в той же пропорции возрастает индукция поля; для магнитного же давления эта зависимость еще сильнее — оно пропорционально квадрату индукции, то есть — обратно четвертой степени радиуса! Закон возрастания давления гидродинамических сил куда слабее — оно всего лишь обратно пропорционально логарифму радиуса. Из этого следует, что магнитное поле, пусть даже очень слабое вначале, неизбежно станет «сильнее» взрыва и остановит движение лайнера к оси. Между прочим, чем слабее начальное поле, тем выше может быть магнитная энергия в точке остановки: ведь слабое поле дольше усиливается, а значит, будет остановлено ближе к оси, где гидродинамическое давление выше. В проведенных во ВНИИЭФ опытах давление магнитного поля индукцией в 1000 Тл достигало четырех миллионов атмосфер, что превышало прочностные пределы любых материалов.

Рекордные значения магнитной энергии в лайнерном ИВМГ получают только при очень большом токе запитки, потому что усиление, определяемое отношением начального и конечного радиусов сжатия, в генераторе этого типа невелико.

Взрывомагнитные генераторы всех типов создавались для применения в ядерном оружии, в частности — для энергообеспечения систем нейтронного инициирования, но предпринимались и попытки расширения области их использования.

…В то, что импульсное магнитное поле способно хорошо «нажать» на металлическое тело, читателю до сих пор приходилось «только верить», но желающие могут убедиться в этом. Установка, которую им предстоит собрать, проста (рис. 4.12).

Рис. 4.12

Схема домашней пушки Гаусса и ее элементы:

1– диод;

2 — резистор;

3 — конденсатор;

4 — катушка с расположенным на ее оси стволом из диэлектрика;

5 — центратор с насаженным кольцом и стальные кольца-снаряды на постоянном магните (см. также врезку слева);

6 — штанга для закорачивания контура.

Выдающийся германский физик и математик К. Гаусс (1777–1885) теоретически обосновал возможность достижения неограниченных скоростей метания проводящих тел магнитным полем (именно — теоретически, потому что на практике эти скорости всегда чем-нибудь да ограничиваются). Он показал, что в энергию метаемого тела может быть преобразовано около 7 % энергии тока, протекающего в катушке (что примерно впятеро ниже КПД выстрела заряженного порохом орудия крупного калибра). Но заставить вырвавшиеся из ствола пороховые газы дополнительно ускорить снаряд нельзя, а вот запитать «отработанным» токовым импульсом другую катушку — можно, поэтому идея Гаусса заключалась в разгоне тела при прохождении им последовательности катушек. Максимальная энергия передается метаемому телу, если ток заканчивается в момент достижения телом середины обмотки, но обеспечить синхронную запитку нескольких катушек в домашних условиях сложно: потребуется много конденсаторов, тиристоров для коммутации, линий задержки, а главное — осциллограф, без которого экспериментатор слеп. Так что воспроизведена всего лишь секция пушки Гаусса, как и в «Хохдрукспумпе» — одна из многих.

Главный элемент — катушка. Ее наматывают эмалированным проводом (ПЭВ, ПЭВТЛ) диаметром 0,5–0,8 мм. Каркасом служит обрезок трубки из диэлектрика (подойдет та, что прилагается к пакету с соком или корпус шариковой ручки, главное — чтобы стенки были потоньше) и два диска-ограничителя из любого диэлектрика. Всего надо намотать примерно 500 витков, стараясь, чтобы обмотка была плотной (ее можно уместить в 12–15 слоев).

Другой важный элемент — конденсатор. Как и при намотке катушки, здесь возможна импровизация, но ориентир указать стоит: у автора под рукой оказался японский, полярный, емкостью 4700 мкФ. Допустимое напряжение зарядки должно быть не менее 400В.

Заряжать конденсатор можно и от сети — через диод. Не забудьте для ограничения тока включить последовательно резистор сопротивлением не менее килоОма, иначе «накроются» и диод и конденсатор. 220 В — эффективное напряжение, а пиковое значение его в сети выше. До пикового значения в конечном итоге зарядится конденсатор, и этого должно хватить для удачного опыта, но всегда может потребоваться резерв, поэтому разумно предусмотреть зарядку по схеме удвоения напряжения.

Энергию накопителя коммутируйте на катушку проводом, укрепленным на пластмассовой штанге. При перерывах в работе штангу оставьте в положении, закорачивающем конденсатор (как на фотографии), иначе вас, вернувшегося полным идей за лабораторный стол, может для начала «дернуть» остаточным напряжением. О метаемом теле. Подойдет и обрезок гвоздя, но большую энергию поле отдаст кольцу, поскольку на единицу массы дипольный момент кольца выше. Хорошо «летят» шайбы стального крепежа. Кольцо вставьте внутрь трубки на центраторе — подходящем по диаметру стержне из любого диэлектрика, заостренном на карандашной точилке. Не надо усердствовать, насаживая кольцо, иначе оно может вообще не полететь или «захватить» центратор с собой.

Ну вот и все. Напряжение зарядки будет возрастать достаточно медленно, и контролируя его тестером, вы сможете выбрать значение, при котором решили стрелять. Яркая вспышка, хлопок разряда, за которыми последуют частые щелчки укатившегося безвозвратно кольца, будут вашими первыми впечатлениями. Немного терпения — и вам удастся добиться того, на что не была способна установка «водяной» кумуляции: пробить метаемым телом алюминиевую фольгу…

…Профессор В. Соловьев с кафедры боеприпасов МГТУ попросил о помощи в реализации новой идеи. В то время правительство СССР было обеспокоено угрозой, исходящей от американских крылатых ракет, разворачиваемых в Западной Европе (рис. 4.13). Лететь они могли на небольшой высоте, «копируя» рельеф местности, так что обнаружить их было непросто. Но проблемы возникали и с уничтожением обнаруженной ракеты: если поражающие элементы пробивали ее корпус, чувствительные датчики формировали сигнал подрыва ядерного заряда, с которого при полете над территорией противника снимались все ступени предохранения. Взрыв с энерговыделением в сотни килотонн не оставлял шансов выжить тому пилоту или расчету, который попал бы в такую цель. Откуда-то возникла оценка (в ее правильности автор испытывал сильные сомнения), согласно которой поражающий элемент должен иметь скорость пять, а лучше — семь километров в секунду: тогда он пробьет корпус ракеты и вызовет детонацию взрывчатого вещества ядерного заряда в одной точке. Взрыв произойдет, но сборка с плутонием не будет обжата со всех сторон (автоматика ядерного заряда просто не успеет сработать за время, пока произойдут эти события). Вместо шара сборка в этом случае превратится в нечто, напоминающее хлебный каравай и цепная реакция из-за потерь нейтронов разовьется не полностью [80].

Однако поражающий элемент должен быть компактным телом, а не тонкой кумулятивной струей, потому что вероятность того, что струя инициирует детонацию малочувствительного ВВ, которым снаряжен заряд, невелика.

Скорости метания компактных тел, превышающие 5 км/с, получают с помощью легкогазовых пушек и рельсотронов.

Рис. 4.13

Верхние снимки: дальность полета крылатой ракеты AGM-86A, (свыше 1500 км) позволяла ударной авиации применять ее вне зоны воздействия средств ПВО. Крылатая ракета BGM-109 морского базирования (на снимке — ее старт с подводной лодки) могла лететь более чем на 500 км дальше. Как AGM-86A, так и BGM-109 комплектовались зарядом W-80 Mod 1. Даже если бы проблема формирования высокоскоростного поражающего элемента и была бы решена, за ней встала бы другая, не менее сложная: чтобы избежать ядерного взрыва, надо было попасть не в любой важный узел ракеты, и даже не просто в термоядерный заряд, а — в запал этого заряда. На вооружении бомбардировщиков В-52 состояли также ракеты AGM-69A SRAM (Short Range Attack Missile, снимок в центре) — существенно меньшей дальности, но более скоростные. Эти ракеты комплектовались зарядами W-69 (ниже) с энерговыделением 170–200 кт

Рис. 4.14

Хранилище ядерных авиабомб В-61

…Надеюсь, читатель не забыл о «Хохдрукспумпе», не слишком лестно охарактеризованной в главе 2. Когда необходимо достичь скоростей, сравнимых с первой космической, бесполезно дополнительными пороховыми зарядами «подкачивать» в ствол газы, потому что тепловая скорость их молекул становится сравнимой со скоростью снаряда и при соударениях с его дном они уже не сообщают сколь-нибудь значительный импульс. В легкогазовой пушке продукты сгорания пороха не воздействуют непосредственно на метаемое тело, а толкают перед собой слой более легкого газа (водорода или гелия), в котором скорость молекул выше, что дает возможность разогнать метаемое тело (правда, очень и очень легкое — доли грамма) до скоростей порядка 10 км/с. Но и сверхлегкий снаряд приходится разгонять долго, поэтому длина легкогазовых пушек достигает десятков метров и место им — в лабораториях, а не на поле боя.

Рельсотрон также весьма громоздок (рис. 4.15), так что в боеприпасах, где экономят каждый грамм и каждый миллиметр, необходим разгон поражающего элемента с куда большим ускорением. Идея Соловьева заключалась в том, чтобы обойти газокинетический барьер, обусловленный недостаточной тепловой скоростью молекул в газах взрыва, применив магнитное поле для разгона, значительно более «жесткого», чем в рельсотроне.

Рис. 4.15

Верхний ряд: слева — схема рельсотрона (рэйлгана). Пондерромоторные силы действуют в течение всего времени разгона и «выталкивают» скользящий по шинам и сохраняющий с ними контакт поддон со снарядом. Сооружение «домашнего» рэйлгана (правее) вполне доступно читателю и можно рассчитывать на достижение скоростей в десятки метров в секунду для тела массой в граммы. В рекордной же установке 31 января 2008 года достигнута скорость 2,5 км/с для снаряда массой чуть более трех килограммов. Учитывая, что энергия зависит от квадрата скорости, а энергоемкости «домашних» и «специальных» конденсаторов — одного порядка, нетрудно понять, почему размеры такого сооружения — циклопические (в центре). Выстрел рейлгана — феерическое зрелище (на нижнем левом снимке — полет его снаряда, видна носовая ударная волна), но близки к истине авторы книги «Артиллерия» (М; Воениздат, 1938 г.), подсчитавшие, что для энергообеспечения тактически значимого режима огня «электропушки» необходима небольшая электростанция

Если внутрь сжимаемого лайнера (см. рис. 4.9) поместить хорошо проводящее тело, то и оно испытает действие огромных пондерромо-торных сил магнитного поля — совсем другого порядка по сравнению не только с «домашней» пушкой Гаусса, но и рельсотроном — и может приобрести значительную скорость. Причем, если в выстреле «домашней» пушки существенную роль играют ферромагнитные свойства метаемого тела, то в ИВМГ плотности энергии такие, что ферромагнетизмом можно пренебречь. Для тех ИВМГ, которые можно было собрать в МВТУ, оценки давали массу метаемого тела (его стали называть «стрелочкой», хотя по форме оно напоминало капельку) чуть более грамма. Были идеи и как подавить нестабильности — до радиусов сжатия в несколько миллиметров, чего для метания было вполне достаточно.

Стрелочки изготовили из самого тугоплавкого металла — вольфрама. Это мало повлияло на результат: на блоке из алюминия, служившим мишенью, осталась лишь неглубокая вмятина от близкой детонации заряда ИВМГ. Напрашивалось предположение, что стрелочка еще в процессе метания испарилась, будучи нагрета вихревыми токами, индуцированными сильным магнитным полем (проводимость вольфрама втрое ниже, чем меди, и глубина проникновения поля (скин-слоя) для микросекундного времени сжатия превышает сотню микрон).

Тогда в приповерхностный слой вольфрама с помощью установки ионной имплантации внедрили частицы углерода, а поверх — еще и десятимикронный слой очень хорошо проводящего серебра. Это позволяло надеяться, что почти все магнитное поле и ток будут сосредоточены в слое серебра. Серебро, конечно, должно было испариться, а углерод — хоть как-то воспрепятствовать теплопередаче в вольфрам. Участники опытов с восхищением рассматривали блестящие, высокотехнологичные стрелочки. Потом прогремел взрыв и в алюминиевом блоке было, наконец, обнаружено долгожданное отверстие. В него радостно тыкали иголками, наивно пытаясь что-то нащупать. Даже небольшой кусочек вольфрама должен контрастно выделяться на фоне алюминия, но рентгеновский снимок мишени (рис. 4.16) показал: кратер «чист», и чуть искривлен, что указывало на потерю устойчивости образовавшего его тела. Стрелочка летела, расходуя себя, испарения не удалось избежать, его только замедлили. Провели еще один опыт: стрелочкой выстрелили в блок оргстекла, снимая ее полет скоростной камерой. На проявленной пленке увидели, как нечто оставляет за собой конус из помутневшего от ударной волны оргстекла, а потом все поле съемки закрывали трещины. И эти снимки сохранились, но разобраться в них, не являясь специалистом, непросто; они позволили определить скорость того, что поначалу оставалось от стрелочки, — 4,5 км/с и дистанцию, на которой от нее не оставалось ничего — несколько сантиметров. Дальнейшее «дожимание» конструкции привело к тому, что эффект высокоскоростного удара стал существенным даже в броне, но стрелочки все равно испарялись в преграде без остатка. Газокинетический барьер вроде и удалось обойти, но за ним стоял другой, «выстроенный» вихревыми токами.

Рис. 4.16

Слева — рентгенограмма алюминиевой мишени. Кратер образовала летящая с высокой скоростью вольфрамовая стрелочка, без остатка испарившаяся в полете. В центре — срез броневого листа с кратером от попавшей в него, летевшей под углом и с высокой скоростью стрелочки. Мишень не пробита, но высокоскоростной удар вызвал откол элементов брони (также обладающих определенным поражающим действием). Справа — образование кратера в жидкости. При высокоскоростном ударе броня течет как жидкость, и вокруг кратера образуется «валик», который виден и на срезе броневого листа

Следует быть корректным и отметить, что подобные опыты были проведены за пару десятков лет до описываемых событий группой А. Сахарова — и с тем же результатом: алюминиевое кольцо испарилось спустя пару микросекунд после метания. Правда, ВМГ, использовавшийся в тех опытах для ускорения кольца, был другого типа…

…Предложенный в 50-х годах спиральный ВМГ (СВМГ) выглядит примитивным устройством (рис. 4.17): труба со взрывчаткой внутри да установленная соосно проволочная спираль. При взрыве труба растягивается в конус и, последовательно закорачивая при расширении виток за витком, уменьшает индуктивность спирали.

Рис. 4.17

Схема спирального взрывомагнитного генератора.

Металлическая труба 1, заполненная взрывчатым веществом 2, окружена обмоткой 3. При подрыве газы растягивают трубу в конус, основание которого движется по виткам обмотки, замыкая их и приближая точку контакта к индуктивной нагрузке 4, куда и вытесняется магнитный поток. В растянутой взрывом части трубы видны продольные канавки. Это — зарождающиеся нестабильности

Как и в случае кумулятивного заряда, простота СВМГ обманчива. Ну, взять хотя бы ту же трубу: при взрывном расширении в ней не только не допустима ни единая трещинка (иначе магнитный поток «упорхнет»), но и поверхность ее должна оставаться достаточно ровной (иначе поток хоть и не «упорхнет» весь, но в каждой ложбинке будет помалу отсекаться). «А как же нестабильности?» — слышится вопрос Настырного. Они, конечно, не могут не появиться (присмотритесь к трубе на рис. 4.17 — ее изображение заимствовано из подлинной фотографии), но начальные диаметры спирали и трубы различаются примерно вдвое и нестабильности не успевают достаточно развиться, пока расширяющаяся часть трубы достигает витка.

Поскольку усиление тока пропорционально отношению начальной и нагрузочной индуктивностей, казалось бы, естественно наматывать всю обмотку с наименьшим возможным шагом. Это — простое, но ложное представление: для устройств с большими временами работы и значительными отношениями начальной и нагрузочной индуктивностей роль сохранения магнитного потока в усилении превалирует и приходится жертвовать индуктивностью обмотки (рис. 4.18).

Теоретическое рассмотрение приводит к экспоненциальным законам возрастания шага и уменьшения индуктивности генератора с длиной спирали. Обычно изоляция провода постоянна по толщине, а значит, и рабочее напряжение рационально делать постоянным. В СВМГ с правильно подобранными обмоточными данными экспонециально возрастает и ток, а экспонента как функция замечательна тем, что и ее производная — тоже экспонента, так что осциллограммы как тока, так и его производной (приводимые далее) будут выглядеть подобно, пока происходит усиление.

Рис. 4.18

Магнитная энергия пропорциональна первой степени индуктивности и квадрату тока, но индуктивное сопротивление ограничивает ток, поэтому получение максимальной энергии от СВМГ возможно лишь при оптимальном соотношении этих величин.

Пусть ток запитки и начальный шаг намотки двух СВМГ одинаковы. Для СВМГ с постоянным шагом обмотки (вверху) это означает, что энергия запитки у него больше, поскольку его индуктивность выше, чем у СВМГ, шаг обмотки которого увеличивается по мере приближения к нагрузке. Но вот преимущество в усилении тока — за «нижним» вариантом: за равный промежуток времени труба «отсечет» (показано синим пунктиром) то же число витков (начальные шаги намотки равны), но нагрузки, при примерно равных наведенных ЭДС, будут существенно различаться: в «нижнем» случае остаточная индуктивность меньше. К тому же, в «нижней» обмотке меньше потери потока, так как меньше длина провода остатка сжатого контура.

Если для энергии в контуре прибавка от «повышенного» тока превалирует над убылью индуктивности вследствие «разрежения» ее витков, то, по мере дальнейшего движения конуса, преимущество «нижнего варианта» возрастает (каждый из последующих его участков будет начинать с большего начального тока и лучше его усиливать) и он имеет все предпосылки не только компенсировать начальное энергетическое преимущество «верхнего», но и многократно превзойти его. Главное — не «переборщить», все более «круто» профилируя обмотку (и уменьшая при этом индуктивность), иначе можно «добиться», что ВМГ вообще перестанет усиливать энергию и даже начнет терять ее, несмотря на значительный генерируемый ток

Из экспоненциального закона изменения индуктивности следует, что в любой момент работы СВМГ (хоть в первую, хоть в последнюю микросекунду) суммарная индуктивности спирали и нагрузки должна уменьшаться на определенную и одинаковую долю за одинаковое время (например, на 10 % за микросекунду). Нагрузка упомянута не случайно: в начале работы, когда индуктивность спирали еще велика, вклад нагрузки в общую индуктивность генератора незаметен. Положение меняется к концу работы: если индуктивность нагрузки недостаточна (или чрезмерна), то ее наличие существенно «отклонит» закон изменения индуктивности от оптимального. Удобно рассматривать зависимость логарифма индуктивности от длины — это будет отрезок прямой (рис. 4.19). Если нагрузка «встроена в закон» (согласована), усиление продолжается вплоть до закорачивания расширяющейся трубой последнего витка.

Подобрать соответствующие теории обмоточные данные спирали непросто. Расчет соленоидов с переменным по длине шагом намотки (а иногда — и переменного диаметра) ненадежен из-за трудности учета взаимной индуктивности витков и граничных эффектов. Так что приходится возбуждать в последовательно подбираемой по секциям обмотке электрические колебания и, измеряя их период, решать эту проблему «в лоб» (рис. 4.20).

Рис. 4.19

СВМГ и в самый последний момент своей работы «не должен знать», что впереди уже не осталось ни одного витка, а только нагрузка (осциллограмма справа внизу, производная тока в этот момент резко падает до нуля). Но, когда «очень нужно», нагрузку все же меняют. На начальных стадиях работы, пока индуктивность спирали велика, это не сказывается, но в конце отклонения от выбранного закона становятся заметны и СВМГ начинает быстрее терять поток и снижать усиление (осциллограмма справа вверху)

Данный текст является ознакомительным фрагментом.