Построение углов

Приведенный в Приложении 3 список первичных отношении показывает, что в большинстве случаев наибольшее числительное в отношении оказывается меньше 20. Исключение составляют два угла: в 5°, который, как я предположил, строится на отношении 23:2, и в 2°, который можно построить приблизительно из отношения 30:1. Многие углы на деле основаны на отношении 19 (в том числе 19:1, 19:2, 19:3 и 19:11) или на отношении 5 и кратных ему чисел (в том числе 10:9, 10:7, 5:6, 5:8 и 15:8).

Проще всего вписать эти отношения в схему, вычертив круг диаметром в 20 единиц. Вслед за профессором Томом мы можем предположить, что в данном случае в качестве стандартной единицы использовался мегалитический ярд (мя) и что диаметр равнялся 20 мя. Прибегнув к обратному визированию, мы можем отметить точки пересечения диаметра и окружности и провести линию диаметра. На этой линии следует отметить точку 19 мя и построить из нее прямой угол. Это легко сделать с помощью небольших колышков и отрезков бечевки для построения треугольника с отношением сторон 3:4:5.

Отметки на этой новой линии длин в 1 мя, 2 мя и 11 мя дадут углы в 3,6 и 30 градусов, построенные методом обратного визирования. Угол в 30° можно проверить, при необходимости построив равносторонний треугольник, но на практике отношение 10:11 дает угол с точностью до 4,2 дуговых минут, которая достаточна в большинстве случаев. Угол в 6° получается с точностью до 32 дуговых секунд. Точность этого угла на основе его числового отношения, на мой взгляд, играла основополагающую роль в математике, астрономии и топографии античного мира.