Максимальный размер гена
Мы только что ввели термин ген для гипотетического материального носителя определенной наследственной особенности. Мы должны теперь подчеркнуть два момента, которые будут иметь большое значение для нашего исследования. Первый момент - это размер, или, лучше сказать, максимальный размер этого носителя; другими словами, - до сколь малого объема можем мы проследить локализацию наследственных потенций. Второй момент - это устойчивость гена выведенная из постоянства "наследственного плана".
В отношении размера имеются два совершенно независимых способа определения. Один основан на генетических данных (эксперименты по скрещиванию), другой - на цитологических данных (прямое микроскопическое наблюдение). Первый способ принципиально достаточно прост. Установив описанным выше путем расположение значительного числа различных признаков (большего масштаба) внутри определенной хромосомы (скажем, у мушки Drosophila), мы, чтобы получить требуемую величину, должны только разделить измеренную длину этой хромосомы на количество признаков и умножить на поперечное сечение. Ибо, конечно, мы рассматриваем как отдельные признаки только такие, которые иногда разделяются кроссинговером и не могут быть обусловлены одной и той же (микроскопической или молекулярной) структурой. С другой стороны, ясно, что наш расчет может дать только максимальный размер, потому что количество признаков, изолированных генетическим анализом, непрерывно растет по мере того, как работа идет вперед.
Другая оценка размера, хотя и основанная на микроскопическом наблюдении, в действительности является гораздо менее прямой. Определенные клетки Drosophila (именно, клетки слюнных желез) оказываются по каким-то причинам гигантски увеличенными, и это касается и их хромосом. В этих последних вы различаете скученный рисунок из поперечных темных полосок, пересекающих нить (табл. IV). Дарлингтон подметил, что число этих полосок (2000 в рассматриваемом случае), хотя и заметно больше, но все же того же самого порядка, как и число генов, локализованных в той же самой хромосоме на основании экспериментов по скрещиванию. Он склонен рассматривать эти полоски как действительные гены (или границы между генами). Разделив длину хромосомы, измеренную в клетке нормального размера, на число полосок (2000), он находит объем гена равным кубу со стороной в 300 А ?. Учитывая всю грубость расчетов, мы можем считать, что такой же размер получается и первым методом.
Таблица III. Двенадцать пар сблизившихся хромосом в материнских клетках пыльцы Fritillaria chitralensis. Точки пересечения петель показывают места кроссинговера между партнерами (X 1600)
Таблица IV. Покоящееся ядро клетки слюнной железы мушки Drosophila melanogaster. Гены прошли восемь циклов удвоения и поэтому выглядят как серии поперечных полосок, из которых каждая содержит 256 генов. Более крупные гены дают сильнее окрашенные полоски (X 1500)