3. Закон исключённого третьего
Закон исключённого третьего, как и закон противоречия, устанавливает связь между противоречащими друг другу высказываниями. Он утверждает: из двух противоречащих высказываний одно является истинным.
Символически:
A v ~ A,
A или не-A. Например: «Аристотель умер в 322 г. до н.э. или он не умер в этом году», «Личинки мух имеют голову или не имеют её» и т.п. Само название закона выражает его смысл: дело обстоит так, как говорится в рассматриваемом высказывании, или так, как говорится в его отрицании, и никакой третьей возможности нет.
Как выразил эту мысль Аристотель: «…Не может быть ничего промежуточного между двумя членами противоречия, а относительно чего-то одного необходимо что бы то ни было одно либо утверждать, либо отрицать».
Человек говорит прозой или не говорит прозой, кто-то рыдает или не рыдает, собака выполняет команду или не выполняет её и т.п. – других вариантов не существует. Мы можем не знать, противоречива некоторая теория или нет, но на основе закона исключённого третьего ещё до начала исследования мы вправе заявить: она или непротиворечива или противоречива.
Этот закон с иронией обыгрывается в художественной литературе. Причина иронии понятна: сказать «Нечто есть или его нет», значит, ровным счётом ничего не сказать, и смешно, если кто-то этого не знает.
В «Мещанине во дворянстве» Ж.-Б.Мольера есть такой диалог:
Г-н Журден.…А теперь я должен открыть вам секрет. Я влюблён в одну великосветскую даму, и мне хотелось бы, чтобы вы помогли написать ей записочку, которую я собираюсь уронить к её ногам.
Учитель философии. Конечно, вы хотите написать ей стихи?
Г-н Журден. Нет, нет, только не стихи.
Учитель философии. Вы предпочитаете прозу?
Г-н Журден. Нет, я не хочу ни прозы, ни стихов.
Учитель философии. Так нельзя: или то, или другое.
Г-н Журден. Почему?
Учитель философии. По той причине, сударь, что мы можем излагать свои мысли не иначе, как прозой или стихами.
Г-н Журден. Не иначе, как прозой или стихами?
Учитель философии. Не иначе, сударь. Все, что не проза, то стихи, а что не стихи, то проза.
В известной сказке Л.Кэролла Белый Рыцарь намерен спеть Алисе «очень, очень красивую песню»:
– Когда я её пою, все рыдают… или…
– Или что? – спросила Алиса, не понимая, почему Рыцарь вдруг остановился.
– Или… не рыдают…
В другой популярной сказке народный лекарь Богомол заключает после осмотра Буратино:
– Одно из двух: или пациент жив, или он умер. Если он жив – он останется жив или не останется жив. Если он мёртв – его можно оживать или нельзя оживить.
Это напоминает ситуацию из старой песенки, в которой тоже используется идея исключительного третьего:
Жила одна старушка,
Вязала кружева,
И, если не скончалась –
Она ещё жива.
Закон исключённого третьего кажется самоочевидным. Тем не менее высказывались предложения отказаться от него или ограничить его действие применительно к определённым высказываниям.
В частности, Аристотель сомневался в приложимости этого закона к высказываниям о будущих событиях. В настоящий момент наступление некоторых из них ещё не предопределено. Нет причины ни для того, чтобы они произошли, ни для того, чтобы они не случились. «Через сто лет в этот же день будет идти дождь» – это высказывание сейчас, скорее всего, ни истинно, ни ложно. Таким же является его отрицание. Но закон исключённого третьего утверждает, что или само высказывание, или его отрицание истинно. Значит, заключает Аристотель, хотя и без особой уверенности, данный закон следует ограничить одними высказываниями о прошлом и настоящем и не прилагать его к высказываниям о будущем.
Немецкий философ Гегель весьма иронично отзывался как о законе противоречия, так и о законе исключённого третьего. Последний он представлял, в частности, в такой форме: дух является зелёным или не является зелёным, и задавал каверзный, как ему казалось, вопрос: какое из этих двух утверждений истинно?
Ответ на этот вопрос не представляет, однако, труда. Ни одно из двух утверждений: «Дух – зелёный» и «Дух – не зелёный» не является истинным, поскольку оба они бессмысленные. Закон исключённого третьего приложим только к осмысленным высказываниям. Только они могут быть истинными или ложными. Бессмысленное же не истинно и не ложно.
Резкой, но хорошо обоснованной критике подверг закон исключённого третьего голландский математик Л. Брауэр. В начале этого века он опубликовал три статьи, в которых выразил сомнение в неограниченной приложимости законов логики и прежде всего – закона исключённого третьего. Первая статья не превышала трех страниц, вторая – четырех, а вместе они не занимали и семнадцати страниц. Но впечатление, произведённое ими, было чрезвычайно сильным.
Брауэр был убеждён, что логические законы не являются абсолютными истинами, не зависящими от того, к чему они прилагаются. Возражая против закона исключённого третьего, он настаивал на том, что кроме утверждения и его отрицания имеется ещё третья возможность, которую нельзя исключить. Она обнаруживает себя при рассуждениях о бесконечных множествах объектов.
Допустим, что утверждается существование объекта с определённым свойством. Если множество, в которое входит этот объект, конечно, то можно перебрать все объекты. Это позволит выяснить, какое из следующих двух утверждений истинно: «В данном множестве есть объект с указанным свойством» или же «В этом множестве нет такого объекта». Закон исключённого третьего здесь справедлив.
Но когда множество бесконечно, объекты его невозможно перебрать. Если в процессе перебора будет найден объект с требуемым свойством, первое из указанных утверждений подтвердится. Но если найти этот объект не удастся, ни о первом, ни о втором из утверждений нельзя ничего сказать, поскольку перебор не проведён до конца. Закон исключённого третьего здесь не действует: ни утверждение о существовании объекта с заданным свойством, ни отрицание этого утверждения не является истинным.
Ограничение Брауэром сферы действия этого закона существенно сужало круг тех способов рассуждения, которые применимы в математике. Это сразу же вызвало резкую оппозицию многих математиков, особенно старшего поколения. «Изъять из математики принцип исключённого третьего, – заявлял немецкий математик Д. Гильберт, – все равно, что запретить боксёру пользоваться кулаками».
Критика Брауэром закона исключённого третьего привела к созданию нового направления в логике – так называемой интуиционистской логики. В последней не принимается данный закон и отбрасываются все те способы рассуждения, которые с ним связаны. Среди них – доказательства путём приведения к противоречию, или абсурду.
С законом исключённого третьего косвенно связан следующий методологический принцип: анализ каждого объекта должен вестись до тех пор и быть настолько полным, чтобы относительно любого утверждения об этом объекте можно было решить, истинно оно или нет. Это требование полноты и всесторонности исследования не относится, конечно, к законам логики. Оно полезно, но нередко оказывается невыполнимым. В случае рассуждений о бесконечных и неопределённых совокупностях объектов, об изменяющихся, текущих состояниях и т.п. изучение объекта не всегда способно достичь такой полноты, чтобы на любой вопрос о нем удалось ответить однозначно «да» или «нет».