Глава 4. Подготовка к изготовлению квадрокоптера
Прежде всего, необходимо определиться с размером конструкции, который принято выражать в расстоянии между осями моторов по диагонали. При изготовлении самого первого коптера лучше избегать крайних проявлений — наладонных нанокоптеров или конструкций с диагональю более 700 мм и весом более 2 кг. Размер диагонали рамы самых распространенных коптеров для обычного любительского применения лежит в пределах от 250 до 600 мм.
Типоразмер 450 мм оптимален с точки зрения экономичности компонентов и простоты изготовления. В свою очередь, коптеры размером 600 мм более стабильны в полете, способны нести больше полезной нагрузки и дают больше возможностей для развития конструкции в перспективе, ими легче управлять визуально, потому что они крупнее. Рамы размером менее 450 мм нежелательно использовать для обучения пилотированию "с нуля", т. к. неопытному пилоту сложно визуально определить положение небольшого коптера в пространстве.
Важным фактором в подборе компонентов коптера являются финансовые возможности пилота, поэтому дать универсальный рецепт невозможно. Мы будем исходить из скромных возможностей школьника или студента, а читатель может масштабировать меру своих затрат самостоятельно.
Примечание
С точки зрения экономии средств и времени обычно выгоднее покупать узлы и компоненты в виде целевых наборов: набор для сборки рамы, набор моторов и регуляторов, набор из передатчика и приемника и т. д. Как правило, наборы стоят на 20–30 % дешевле, чем при покупке компонентов по отдельности.
На основе опыта автора и обсуждений на тематических форумах можно предложить следующий экономичный алгоритм построения и развития конструкции в условиях ограниченных средств.
1. Если нет возможности за один сезон закупить полный комплект дополнительного оборудования — видеокамеры, видеоканал, OSD, GPS, то имеет смысл приобрести с прицелом на будущее качественный полетный контроллер, хорошие регуляторы оборотов на рабочий ток не менее 30 А, комплект аппаратуры радиоуправления не менее, чем на 8 каналов (лучше на 12) и построить первую раму размером 450 мм. Оснастить эту раму недорогими двигателями и пропеллерами.
2. После успешного обучения, к следующему сезону приобрести более мощные двигатели, пропеллеры и батареи, построить раму размером 600 мм и переставить на нее уже имеющиеся контроллер, регуляторы и приемник радиоуправления. Если будет возможность, то оснастить эту раму приемником GPS и видеооборудованием.
Подбор силовых компонентов
К силовым компонентам конструкции относятся все узлы и детали, непосредственно участвующие в создании тяги, позволяющей коптеру оторваться от земли: двигатели и пропеллеры (винтомоторная группа, ВМГ), регуляторы оборотов, силовая батарея. Они требуют тщательной взаимной оптимизации параметров, не допуская при этом выхода за рамки допустимых значений тока и температуры.
Примечание
Общепринятым и универсальным критерием оценки качества подбора компонентов является время полета коптера. Если использовать силовые компоненты среднего ценового сегмента, применяемые в большинстве любительских конструкций, то обычное время комбинированного полета — движение + висение — составляет 14–18 минут.
Резкие акробатические эволюции и ускорения сокращают время полета, Также уменьшается время полета в ветреную погоду, когда квадрокоптер вынужден непрерывно компенсировать порывы ветра скачками оборотов двигателей.
Расчеты и оптимизация
Для оптимизации конструкции можно использовать популярный онлайн-сервис www.ecalc.ch, позволяющий производить расчет и оптимизацию параметров самолетов, вертолетов, квадрокоптеров и импеллерных моделей. По отношению к компьютерной оптимизации авиамоделисты делятся на три категории:
• те, кто тщательно обсчитывают всевозможные сочетания параметров и безусловно доверяют результату;
• те, кто не признают компьютерную оптимизацию вообще;
• те, кто используют компьютерные расчеты для оценки и проверки, не выходят ли эксплуатационные параметры за пределы допустимых значений, с последующей проверкой и доводкой в ходе испытаний.
Автор склоняется к третьему варианту.
В качестве примера выполним расчеты для двух реальных наборов компонентов, которые автор успешно использует на своих коптерах несколько лет, и сравним реальные показатели нагрузок и времени полета с расчетными. Без регистрации сайт предоставляет только демоверсию расчетов со сниженной точностью и ограниченным выбором компонентов, поэтому лучше сразу зарегистрироваться.
Набор 1 — рама 450 мм:
• двигатели Turnigy Aerodrive 2213, 1050kV, 56 г, 16 А пиковый ток;
• батарея Turnigy nano-tech, 2200 mAh, 201 г;
• регулятор четырехканальный Skywalker Quattro, 20 А;
• пропеллеры безымянные 10x4,7 дюйма.
Набор 2 — рама 600 мм:
• двигатели AX-2810Q, 750kV, 70 г, 30 А пиковый ток;
• батарея Turnigy nano-tech, 3300 mAh, 317 г;
• регуляторы Afro, 30 А;
• пропеллеры Gemfan 11x4,7 дюйма.
Введем в форму на сайте данные для первого набора компонентов. Вес модели (включая ВМГ) зададим 950 г, потому что именно столько весит полностью снаряженный коптер автора, включая дополнительное оборудование. Если рамы у вас еще нет и оценить полный вес не получается, то можно оставить вес 850 г, предложенный по умолчанию. Вес снаряженного коптера влияет на расчет потребляемого тока и температуры двигателей.
В списке аккумуляторов выберем наиболее близкий по характеристикам вариант: LiPo 2100mAh 30/45C. База данных сайта хранит и отображает вес аккумулятора из расчета на одну банку. Во время расчета этот вес будет автоматически умножен на количество банок.
В списке регуляторов выберем опцию max 20A.
Нужный мотор Turnigy найдем в самом конце списка: 2213-20Т (1050). Его вес на сайте слегка занижен относительно реального.
Нужного нам производителя пропеллеров в списке нет, поэтому можно выбрать один из похожих, АРС Electric E или GWS ЕР размера 10*4,7. Надо особо отметить, что при одинаковом паспортном размере пропеллера на практике тяга и экономичность ВМГ может различаться на 10–15 % в зависимости от производителя и качества пропеллеров и двигателей. Поэтому вам в любом случае впоследствии придется покупать пропеллеры разных производителей и экспериментировать с ними. Автор провел серию измерений тяги различных недорогих пропеллеров размером от 9x5 до 11x4,7 в сочетании с популярным двигателем из набора 1 и установил, что наиболее эффективными оказались пропеллеры 10x4,7 безымянного производителя, которые продаются практически везде по самой низкой цене. К сожалению, среди этих пропеллеров весьма высок процент брака в виде "бабочки" лопастей, поэтому они требуют тщательной балансировки и даже устранения "бабочки" при помощи фена, но распространенность, чрезвычайно низкая цена и высокая эффективность искупают эти недостатки в коптерах для начинающих.
Ввод данных окончен, нажимаем кнопку Рассчитать и проверяем результаты. Сразу можно отметить, что полетное время сильно занижено. В реальности среднее полетное время квадрокоптера #1 при наличии новой полностью заряженной батареи составляет 12–14 минут, при спокойном висении — до 17 минут. Зато прочие параметры, такие как потребляемый ток, температура двигателей и т. д., весьма близки к реальным. Мы видим, что ни один из параметров не выходит за рамки допустимого, а регуляторы можно покупать на ток 15 А.
Теперь рассчитаем второй вариант комплектации. Зададим реальный вес снаряженной рамы 1200 г, включая дополнительное оборудование. Если вы еще не знаете вес готовой рамы, можете для оценочного расчета ограничиться весом 1000 г.
Далее выбираем: батарея LiPo 3300mAh — 35/5 °C, регулятор max 30A, двигатель AX-2810Q-750, пропеллеры АРС Electric E 11*4,7. Запускаем расчет и анализируем результат. Расчетное время полета вновь занижено. В реальности среднее время смешанного полета этого коптера на свежей батарее 3300 mAh составляет 13–15 минут. Но главное, что мы видим — большой, почти двукратный запас по току для регуляторов, моторов и батареи. Расчетные значения тока и температуры весьма точно соответствуют реальным. О недогруженное™ моторов говорят и графики внизу страницы. В данном случае автор этого и хотел, приобретая компоненты "на вырост", для более крупной рамы и большей цолезной нагрузки.
Обратимся к столбцу Коптер в результатах расчета. При общем весе ВМГ 788 г расчетная полезная нагрузка составила 955 г, т. е. максимальный расчетный полетный вес, при котором ток и температура не выходят за пределы допустимых, составляет 788 + 955 = 1743 г. Полетный вес имеющегося коптера 1200 г, значит, мы можем добавить еще 543 г полезной нагрузки. Надо полагать, что если полетный вес коптера будет соответствовать предельному, мы как раз получим расчетное укороченное время полета.
Теперь проведем эксперимент. Увеличим размер пропеллера до 12x4,7. Мы видим, что потребляемый от батареи ток несколько увеличился, но при этом время полета возросло. Это говорит о том, что повысилась эффективность работы ВМГ. И действительно, для двигателя AX-2810Q с kV = 750 пропеллер 11x4,7 слишком мал и не позволяет развить оптимальную тягу. Полевые испытания с. пропеллерами 12x4,5 полностью подтвердили расчеты. Среднее время смешанного полета увеличилось примерно на 3 минуты.
Дальнейшее увеличение размера пропеллера до 14x4,7 приводит к возрастанию времени висения, но снижает время активного полета. Это связано с большой инерцией вращений винтов. Стабилизация коптера, как вы знаете, происходит за счет быстрого и точного управления оборотами двигателей. С увеличением размера быстро нарастают пиковые токи через двигатели и регуляторы, которые вынуждены резко разгонять и тормозить тяжелые "маховики" пропеллеров. Это увеличивает расход энергии при активном пилотировании. Увеличивается гироскопический эффект пропеллеров. В целом коптер становится более плавным и вялым в управлении. Поэтому пропеллеры большого диаметра применяются в основном для аэровидеосъемки при стабильном и плавном полете.
Примечание
Когда работа над книгой подходила к завершению, возобновил свою работу сайт российского калькулятора www.rc-calc.com Интерфейс этого сайта проще и понятнее для новичков; сайт позволяет авторизоваться через аккаунты в соцсетях или Google, хранить данные своих коптеров и обмениваться ссылками на результаты расчетов. К тому моменту, когда вы будете читать эту книгу, сайт наверняка будет наполнен достаточным количеством исходных данных для расчетов.
Теперь, когда вы поняли основные принципы подбора компонентов, поэкспериментируйте с различными пропеллерами, моторами и батареями. Обратите особое внимание на то, в каких случаях нагрузки выходят за пределы допустимого. Постепенно вы начнете интуитивно чувствовать оптимальное сочетание компонентов и без программы расчета. Простое увеличение емкости батареи не обязательно увеличит время полета, т. к. возрастет вес батареи. Соответственно, для новой батареи может понадобиться изменить ВМГ.
Стойкость конструкции к авариям
Выбор конструкционных материалов во многом зависит от разумно заданной стойкости к авариям. Мы исходим из того, что аварии случаются даже у опытных пилотов, а в период обучения без них не обойтись.
Стойкой к авариям является не та конструкция, которая вообще не ломается при падении — так не бывает, а та, у которой ущерб после падения минимален. Поэтому важной частью стойкой конструкции является наличие разрушаемых элементов. Эти элементы должны иметь минимальную стоимость и сложность изготовления. Разрушаясь, они поглощают энергию деформации и сохраняют в целости дорогие и важные узлы. В ряде случаев используются подпружиненные элементы.
Классическим примером поглощающего узла являются посадочные стойки. Их намеренно делают упругими и прочными ровно настолько, чтобы при сильном ударе о землю они поглотили максимум энергии, но не передали деформацию дальше, а в крайнем случае сломались сами. В общем случае, прочность элементов конструкции должна нарастать от периферии к центру. Сначала должны идти амортизирующие элементы, затем сминаемые и далее несущие и критически важные. Здесь просматривается аналогия с пассивной безопасностью автомобиля, у которого сначала идут амортизирующие бамперы, затем сминаемые зоны моторного отсека и багажника, а потом усиленный стальными трубами салон.
Примером неудачной, с точки зрения стойкости к авариям, конструкции квадрокоптера является сочетание прочных монолитных лучей и прослабленного чрезмерно большими прорезями и отверстиями центра рамы. При ударе лучом о землю вся энергию удара передается на центральную часть, ломая ее на куски. При этом могут пострадать и электронные узлы. После аварии потребуется долгий и сложный ремонт рамы, тогда как сломанный луч можно заменить даже в полевых условиях, а погнутый просто выправить. Ослабление центра рамы относительно лучей не дает заметного выигрыша по весу, но существенно снижает стойкость. Поэтому лучше сделать прочный центр рамы, а лучи облегчить фрезерованием или высверливанием. Сказанное не относится к рамам, у которых центр и лучи из карбона. Такие рамы почти неразрушаемы, но стоят достаточно дорого.
Еще одним разрушаемым элементом является нейлоновый крепеж: — винты, гайки, стойки. Их нежелательно применять для крепления лучей и монтажа нагруженных элементов конструкция в тяжелых коптерах, но для крепления электронных узлов, антенн и небольших видеокамер они подходят хорошо. При аварии с деформацией рамы нейлоновые винты легко срезаются или срываются и плата или антенна просто отлетает в сторону, оставаясь целой. В случае использования прочного металлического крепежа можно получить плату полетного контроллера с отломленными углами или даже треснувшую по диагонали. Особенно сложны в диагностике визуально незаметные скрытые трещины платы с разрывом проводников. Применение нейлонового крепежа также дает экономию веса, которая очень важна для небольших коптеров.
Расцепляемые электрические разъемы тоже вносят свой вклад в безопасность. Кроме традиционных для авиамодельного оборудования штыревых рядных разъемов все чаще применяются миниатюрные разъемы типа MOLEX. Оба типа разъемов не разрушаются и не повреждают плату при разъединении рывком во время аварии, но обеспечивают надежный контакт во время эксплуатации. Поэтому не следует дополнительно фиксировать разъемы в гнезде при помощи термоклея или металлических скобок. Иначе вероятность после аварии получить вырванные с платы вместе с кусками дорожек гнезда разъемов будет существенно выше, чем вероятность пропадания контакта в полете.
Силовые провода от распределителя питания к регуляторам и от регуляторов к моторам следует соединять только пайкой (рис. 4.1).
Рис. 4.1. Пример монтажа двигателя с укладкой провода снаружи луча
Несмотря на то, что эти провода следует делать как можно короче, желательно предусмотреть небольшой запас на вытягивание при деформации лучей или отламывании моторамы. Провода, выходящие из двигателя, необходимо прочно закрепить либо каплей эпоксидной смолы в окне двигателя, либо хомутом к мртораме, чтобы избежать отрыва провода от обмотки внутри двигателя при натяжении. На рис. 4.2 обратите внимание на фиксацию выводов двигателя эпоксидной смолой. Внутри луча уложен небольшой запас провода (~2 см) на случай отламывания моторамы.
Рис. 4.2. Пример монтажа двигателя с укладкой провода внутри луча
На квадрокоптерах не применяются так называемые пропсейверы — крепление пропеллеров к втулке при помощи резинового кольца, как на легких электрических самолетах. Нагрузки на пропеллер слишком велики, поэтому пропеллеры крепятся жестко, при помощи гайки или нейлоновых стяжек и при аварии обычно ломаются. Защитные кольца вокруг пропеллеров хорошо защищают окружающих от травм, но мало помогают при падении.
Примечание
Коптерам присуще захлестывание лопастей, т. е. удар лопастей вращающегося винта о луч даже при не очень сильном ударе о землю. Поэтому нельзя располагать регуляторы или другие компоненты на луче в зоне потенциальной досягаемости удара лопастью.
Для защиты силовых батарей от механических повреждений в продаже появились карбоновые чехлы, но применение чехлов или поролоновых оберток может привести к перегреву батареи, поэтому защиту батарей используйте с осторожностью.
Конструкционные материалы
Как мы уже говорили, в идеале механическая прочность конструкции должна нарастать от периферии к центру. В остальном конструкция коптера, особенно начального уровня, мало критична к конструкционным материалам.
Древесина, как ни странно, является одним из лучших материалов для изготовления рамы первого коптера размером до 450 мм, особенно его лучей. Дело в том, что лучи из древесных брусков плохо проводят вибрацию от моторов и не имеют выраженных собственных резонансов. Это очень благотворно влияет на стабильность работы акселерометров. Лучи из древесины мало весят и стоят недорого. Центральную часть рамы можно изготовить из/Качественной фанеры толщиной 3–4 мм.
Иногда можно встретить объемные конструкции из фанеры, изготовленные лазерной резкой и собранные по принципу 3D-паззлов. Но деталям из древесины присущи и недостатки. Это низкая механическая прочность и склонность к раскалыванию, что порождает проблемы при креплении моторамы к лучам и самих лучей к центру рамы. Необходимо иметь определенный опыт работы с древесиной. Если вы обладаете навыками, инструментами и сырьем, то почти все детали рамы первого коптера вполне можно изготовить из брусков и фанеры. Исключение составят лишь моторамы и мелкие крепежные кронштейны для дополнительных устройств. Следует избегать сборки на клею — это существенно снижает ремонтопригодность.
Радиотехнический стеклотекстолит изготавливается из нескольких слоев стеклоткани, пропитанных эпоксидной смолой. На производстве листы зажимаются в пресс и подвергаются горячему отверждению. Материал прочный, достаточно легко сверлится, пилится и фрезеруется в домашних условиях, но почти не поддается лазерной резке. Обычно применяется для изготовления печатных плат, поэтому продается в радиомагазинах с покрытием медной фольгой с одной или двух сторон. Доступность и прочность сделали этот материал очень популярным. Серьезными недостатками стеклотекстолита являются большой удельный вес и склонность к расслаиванию при механических нагрузках.
Внимание!
Не следует удалять фольгу с текстолита при помощи раскаленного утюга! В результате перегрева пластина текстолита необратимо деформируется, закручиваясь "винтом". Кроме того, перегретый текстолит склонен к расслаиванию.
Фольгу следует удалять химическим травлением при помощи хлорного железа или персульфата аммония. Эти реактивы можно приобрести в радиомагазине вместе с текстолитом. Процесс травления в свежем подогретом растворе хлорного железа занимает 15–20 минут. Раствор можно использовать многократно. Для экономии раствора лучше протравливать уже готовые детали. Протравленные поверхности можно красить, к ним хорошо прилипает эпоксидный клей.
Внимание!
Будьте аккуратны при работе с хлорным железом! Раствор оставляет на окружающих предметах и одежде ничем не удаляемые бурые пятна, а также сильно окрашивает кожу рук.
Конструкционный текстолит по структуре аналогичен радиотехническому, но более прочен, меньше склонен к расслаиванию под нагрузкой. В отличие от радиотехнического обладает худшими изолирующими свойствами, но для изготовления механических деталей это не имеет значения. Сверлится, пилится и фрезеруется так же легко, как и радиотехнический. Не требует удаления фольги. Обычно окрашивается в черный, реже в коричневый или зеленый цвет. Иногда имеет текстурированную тиснением поверхность. К сожалению, этот материал редко встречается в продаже в России, хотя на производстве в Китае используется очень широко, как дешевый заменитель карбона. В России можно попробовать приобрести листовой "электротехнический текстолит G10", но его цена будет выше, чем у китайского конструкционного.
Карбон во всех его вариациях является почти идеальным материалом для летающих устройств. Наполняющим и силовым элементом материала являются карбоновые волокна, а связующим веществом — полиэфирные композиции горячего либо холодного отверждения. Карбоновым волокнам присуща чрезвычайно высокая удельная прочность при малом весе. Недостатком карбоновых деталей является хорошая проводимость вибрации и наличие выраженных собственных резонансов, что вредит виброзащите.
В авиамоделизме применяются следующие разновидности карбоновых материалов.
• Карбоновая ткань изготавливается из длинных волокон методом перекрестного плетения. В зависимости от технологии бывает из скрученных и прямых волокон, различается по плотности плетения. Применяется для формовки объемных изделий (каркасы, кожухи). Из карбоновой ткани методом вакуумной формовки изготавливают особо прочные и легкие пустотелые объемные рамы коптеров, так называемые "корки".
• Листовой карбон изготавливается из нескольких слоев карбоновой ткани, пропитанной полиэфирной композицией с последующим холодным или горячим отверждением под прессом. Очень легок и прочен, почти не гнется, сверлится и фрезеруется труднее, чем стеклотекстолит. Стоит в несколько раз дороже стеклотекстолита.
Внимание!
В силу своих электрических свойств и физической структуры листовой карбон в некоторых случаях способен полностью заблокировать работу приемника GPS, если его антенна расположена ближе, чем 2–2,5 см от поверхности карбона. При использовании карбоновых рам или деталей приемник GPS должен быть вынесен вверх на штанге или стойках высотой не менее 3 см.
• Карбоновые трубки изготавливаются либо накручиванием нескольких слоев карбоновой ткани на оправку с пропиткой смолой, либо экструзией полимерной массы с наполнителем из карбоновых волокон. Это очень хороший материал для изготовления лучей рамы либо сборной трубчатой рамы целиком. Но у него есть серьезный недостаток: карбоновым трубкам, особенно изготовленным из навитой ткани, присуща склонность к резко выраженным пикам резонанса на частотах вибрации.
• Экструдированные профили (pulltruded carbon) изготавливаются экструзией полимерной массы с наполнителем из карбоновых волокон через профильную фильеру. Это могут быть круглые, квадратные или прямоугольные прутки, трубчатые профили. Материал различается по длине и ориентации карбоновых волокон. Дешевые материалы изготавливаются с наполнителем из коротких, хаотично ориентированных, карбоновых волокон. Как правило, это профили относительно большого сечения. Более дорогие и прочные профили содержат длинные волокна, ориентированные вдоль профиля.
При изготовлении коптеров популярны трубчатые профили комбинированного сечения (рис. 4.3): квадратные снаружи, но с круглым отверстием внутри (square tube). Такие профили сочетают высокую удельную прочность круглой трубки и удобство монтажа квадратного профиля.
Рис. 4.3. Карбоновый профиль комбинированного сечения
Дело в том, что при изготовлении лучей из круглой трубки для крепления моторов и стыковки с рамой приходится применять специальные хомуты и кронштейны, а для квадратного профиля они не нужны.
• Карбоновые сэндвичи состоят из двух наружных слоев карбоновой ткани, наклеенных полиэфирным клеем на тонкую листовую бальзу. Как правило, изготавливаются самостоятельно и применяются при строительстве малогабаритных сверхлегких конструкций. Обладают уникальным соотношением удельного веса и прочности.
• Алюминиевые сэндвичи — материал, применяемый в рекламном производстве и при облицовке фасадов зданий. Два слоя алюминиевой фольги, толщиной 0,3 мм каждый, наклеены на листовой пластик. Очень хорошо обрабатывается на станке с ЧПУ и вручную. Но обладает большим удельным весом и низким отношением прочности к весу. Поэтому не рекомендуется для изготовления летающих конструкций.
• Смешанные материалы — китайская новация, направленная на снижение себестоимости и цены материала. В производстве экструдированных профилей наполнитель может состоять из смеси карбоновых (-60-70 %) и стеклянных (-40-30 %) волокон. В производстве листовых материалов берется окрашенный в черный цвет технический текстолит G10 и с двух сторон облицовывается одинарным слоем карбоновой ткани. По внешнему виду для неопытного взгляда такой материал неотличим от чисто карбонового листа.
Как распознать поддельный карбон
Строго говоря, смешанные материалы нельзя считать подделкой, если производитель или продавец честно сообщает о составе материала и продает его по адекватной цене. Но, к сожалению, на практике комбинированные материалы очень часто продают под видом и по цене чистого карбона. Как можно распознать подделку?
При дистанционном заказе в интернет-магазине невозможно заранее опознать подделку, разве что по необычно низкой цене по сравнению с другими магазинами.
Экструдированные профили со смешанным наполнителем визуально почти невозможно отличить от чисто карбоновых. По цвету они практически не отличаются от профилей с чистым наполнителем, потому что цвет можно легко затемнить добавлением технической сажи. Сравнению поддается только удельный вес, но для этого надо иметь возможность взвешивать разные образцы.
Поддельный листовой карбон можно довольно легко распознать по срезу (рис. 4.4).
Рис. 4.4. Боковые срезы карбона и текстолита
Возьмите деталь со срезом после фрезы или слегка обработайте кромку листа наждачной бумагой. Затем протрите срез ваткой, смоченной спиртом, органическим растворителем 646 или ацетоном. Прежде всего, на ватке должны остаться только мелкие частицы материала, без следов красителя. Кустарно изготовленный "гаражный" карбон или облицованный карбоном черный текстолит может оставить следы краски.
Обработанный растворителем срез карбона почти не матируется и демонстрирует отчетливо заметную слоистую структуру карбоновой ткани, на которой видно чередование укладки слоев. Срез текстолита после обработки становится светло-серым, матовым, слоистую структуру почти не заметно.
При сверлении или фрезеровании опилки от настоящего карбонового листа черные и пушистые, как тонкая пыль. При обработке стеклотекстолита опилки светло-серые и более грубые. В процессе обработки большинства разновидностей текстолита ощущается характерный резкий запах фенольных смол, входящих в его состав. Полиэфирные смолы карбоновых листов почти не издают запах.
Сплавы алюминия применяются в основном для изготовления трубчатых лучей рамы и мелких крепежных элементов. Стоимость таких лучей, в отличие от карбоновых, очень мала. После аварии незначительно погнутый луч можно выправить в полевых условиях. Листовой алюминий для изготовления центральной части рамы и моторам не применяется по причине излишнего веса и сложности обработки в домашних условиях. Более целесообразно применять листовой текстолит или карбон.
Пластик в последнее время набирает популярность листовой фиберпластик, обычно акрилат, армированный дисперсным стекловолокном (FRP, Fiberglass Reinforced Plastic). Он легче стеклотекстолита и без проблем обрабатывается в домашних условиях, с завода окрашен в различные яркие цвета. При этом он упруг и прочен, меньше подвержен изломам. Небольшая рама из фиберпластика получается прочной, красивой и легкой. К сожалению, его довольно сложно купить в небольшом количестве, и стоит он на российском рынке несуразно дорого. Будем надеяться, что со временем цена и предложение нормализуются. Остальные материалы применяются в качестве вспомогательных, для изготовления чехлов, кронштейнов и т. д.
Виброзащита
Вибрация — это проклятие винтокрылых машин, и квадрокоптеры — не исключение. Источником вибрации являются винтомоторные группы, каждая из которых дает вибрацию на своей частоте, распространяющуюся по лучам к центральной части рамы и полетному контроллеру. При наложении нескольких высокочастотных колебаний возникают низкочастотные колебания с частотой, равной разности частот источников вибрации. Картину усугубляют собственные резонансы элементов конструкции.
Примечание
Вибрация очень вредна для акселерометров и гироскопов, поскольку сбивает их показания. Внешне воздействие вибрации на контроллер проявляется в хаотичном подергивании коптера, его дрожании, внезапных рывках и кратковременной потере управления на определенных оборотах при резонансе конструкции. В особо экстремальных случаях возможен внезапный переворот коптера и авария.
Виброзащита включает в себя балансировку винтомоторной группы, которую мы рассмотрим в следующем разделе, а также виброизоляцию — препятствование распространению вибрации при помощи вибропоглощающих и виброизолирующих материалов.
Современные алгоритмы программной фильтрации позволяют эффективно защищать полетный контроллер от вибрационного шума в показаниях акселерометров, поэтому задача виброзащиты существенно упростилась. Сейчас уже не имеет практического смысла виброизоляция креплений моторов, напрасно усложняющая конструкцию. Тщательной балансировки пропеллеров и моторов вполне достаточно.
Далее вибрация распространяется по лучам. Высверливание или фрезерование отверстий в алюминиевых лучах не только облегчает конструкцию, но также помогает подавить вибрацию и резонансы. Для подавления резонансов трубчатых карбоновых лучей их внутреннее пространство заполняют монтажной пеной или вставляют цилиндрики длиной около 2 см из плотной пористой резины. Цилиндрики должны вставляться туго и располагаться на разном расстоянии друг от друга. Среднее расстояние между вставками примерно 5–7 см.
Внимание!
В стенках карбоновых лучей нельзя рассверливать или фрезеровать окна, это значительно снизит их прочность.
К центральной части рамы лучи всегда крепятся жестко и прочно. Допускается складная конструкция, но виброизоляция в этой части конструкции никогда не применяется.
Благодаря современным алгоритмам фильтрации вибропомех полетный контроллер может быть жестко прикреплен к раме (рис. 4.5).
Рис. 4.5. Варианты крепления полетного контроллера к раме
Автор настоятельно советует поступать именно так, а особое внимание уделить балансировке ВМГ. Но иногда, особенно при использовании дешевых некачественных моторов и пропеллеров, качественная балансировка не получается. В таком случае следует смонтировать контроллер на 1–2 слоях пенистого двустороннего скотча или на проставках из плотной резины. Избегайте избыточного демпфирования контроллера!
Избыточное демпфирование
Избыточное демпфирование контроллера возникает при использовании слишком мягких демпферов, допускающих раскачивание. Ускорения при вибрации — линейные, и раскладываются на ортогональные векторы, поэтому не влияют на гироскопы, затрагивая только акселерометры. Но при слишком мягких демпферах появляется вращательная составляющая вибрации, как показано на рис. 4.6.
Рис. 4.6. Эффект избыточного демпфирования
Если центр тяжести платы смещен относительно геометрического центра точек опор, то линейные ускорения неравномерно смещают плату на упругом подвесе, отсюда и возникает вращательная составляющая.
Вращательная составляющая "сводит с ума" гироскопы, а поскольку гироскопы предназначены для немедленной и острой реакции на угловые Отклонения, то вред от передемпфирования значительно превосходит вред от вибрации. Неопытные владельцы коптеров склонны чрезмерно демпфировать полетный контроллер. Лучше начинать с монтажа контроллера вообще без демпферов, и смягчать крепление только при крайней необходимости, когда балансировка ВМГ и настройка параметров программной фильтрации не помогают.
Демпфирование подвеса камеры
Вибрация камеры проявляется на изображении в виде "эффекта желе", когда изображение полностью или в виде чередующихся широких полос колышется, словно студень. Этот эффект возникает из-за биений между частотами вибрации и частотой смены кадров.
Камера не должна жестко отслеживать малейшее отклонение рамы, поэтому, в отличие от крепления контроллера! для подвеса камеры применяют мягкие демпферы. Обычно это специальные пустотелые амортизаторы-"грибки" из силикона.
Амортизаторы различаются по размерам и жесткости. Чем тяжелее камера, тем жестче амортизаторы и тем большее их количество требуется. Приблизительная жесткость в виде максимальной нагрузки на один амортизатор указывается в его характеристиках, но для достижения наилучшего результата обычно требуется подбирать жесткость и количество амортизаторов экспериментально. Поэтому амортизаторы лучше сразу приобретать с запасом и различной жесткости.
Маленькую и легкую камеру можно подвесить на четырех амортизаторах малой или средней жесткости. При конструировании подвеса также следует избегать вращательно-раскачивающей составляющей, которая может сопровождать вибрацию.
Для того чтобы избежать раскачивания подвеса, следует стараться поднять его центр тяжести как можно выше и разнести амортизаторы подвеса на максимальное расстояние, как показано на рис. 4.7.
Остальные электронные узлы, такие как приемники GPS, выносные магнетометры, приемники и т. д., виброизоляции не требуют.
Рис. 4.7. Предотвращение раскачивания подвеса
Фиксация резьбовых соединений
Высокочастотная вибрация способствует саморазвинчиванию резьбовых соединений. Чтобы воспрепятствовать этому, применяются различные фиксаторы резьбы. Прежде всего, это гайки со специальными нейлоновыми вставками. Формально это одноразовые гайки, но на практике они выдерживают 3–4 цикла завинчивания развинчивания, после чего нейлоновая вставка истирается резьбой и гайку нужно менять.
В случаях, когда гайки с фиксатором применить невозможно, например при креплении двигателя к мотораме, используют жидкие фиксаторы резьбы. В обиходе их часто называют "локтайт" по имени наиболее известного производителя Loctite. Небольшое количество жидкости наносят на резьбу винта непосредственно перед завинчиванием. После того как винт вкручен, жидкость полимеризуется от контакта с металлом, без присутствия воздуха. Поэтому такие фиксаторы называются анаэробными. Поскольку катализатором полимеризации являются ионы металла, винтовые соединения "пластик — пластик" такая жидкость не зафиксирует.
Приобрести фиксатор резьбы можно в любом магазине автозапчастей и аксессуаров. По прочности фиксации жидкости делятся на три категории: сильная (красная), средняя (синяя) и слабая (зеленая). При сборке квадрокоптеров желательно использовать синюю или зеленую жидкость. Они размягчаются при нагревании. Для вывинчивания винта рекомендуется нагреть его, например, мощным паяльником. Соединения, зафиксированные качественной красной жидкостью, зачастую не удается расфиксировать даже при сильном нагреве.
После разборки обязательно следует очистить резьбы винта и гайки от остатков фиксатора при помощи метчика и плашки, а перед сборкой нанести новый слой фиксатора.
Примечание
Не используйте фиксатор для разборных соединений типа "металл — пластик". Отвердевший фиксатор, прилипший к металлической резьбе, разрушит резьбу пластиковой детали при вывинчивании. Если деталь, в которую ввинчен стальной винт, алюминиевая, то старайтесь вывинчивать винт только при нагреве или использовать слабый фиксатор, иначе алюминиевая резьба может быть испорчена.
Для фиксации резьбы нейлонового крепежа можно использовать циакриновый клей. Это обычный "секундный" клей в маленьких тюбиках. Такой клей очень быстро и прочно фиксирует нейлоновую резьбу. Смоченный клеем винт следует завинчивать быстро и не останавливаясь. Соединение с клеем исключительно одноразовое, развинтить его не получится! Циакриновый клей не дает надежную фиксацию металлических резьб.
Крепление моторов и винтов
Конструкция квадрокоптера предусматривает только жесткое крепление винтов на валы моторов, и должно быть максимально надежным. Потеря пропеллера в полете означает немедленную и безусловную аварию коптера, а неправильное крепление значительно усиливает вибрацию.
Даже опытные владельцы коптеров допускают распространенную ошибку в монтаже моторов и винтов: чрезмерный вынос вверх относительно плоскости крепления. Обратимся к рис. 4.8, на котором схематически изображены два способа монтажа.
Рис. 4.8. Два способа монтажа моторов на мотораме
Способ (а) технически проще для монтажа мотора, особенно если у этого мотора длинный вал со стороны ротора, а также позволяет использовать для крепления винта стандартную цангу, которая идет в комплекте мотора. Очевидно, что малейший дисбаланс винта приведет к значительной маятниковой вибрации мотора на упругой мотораме. В свою очередь, такая вибрация приводит к "бабочке" вращения винта — движению лопастей в разных плоскостях — что существенно снижает эффективность ВМГ. Эта конструкция имеет четко выраженные резонансы вибрации при определенных оборотах мотора. Данный способ требует очень качественной балансировки винтов и моторов.
В способе (б) мотор находится под моторамой, а винт закреплен на штатном пропсейвере или цанге как можно ближе к мотораме. В данном случае маятниковая вибрация минимальна. Недостатком второго варианта является возможность захлестывания лопастей об луч при жесткой посадке или аварии. Но, как правило, аварии происходят редко, и винты при этом все равно ломаются, а вибрация доставляет намного больше неприятностей.
Сказанное не относится к специальным моторам для квадрокоптеров, которые имеют уменьшенную высоту и готовый узел крепления винта, интегрированный с мотором. Такие моторы крепятся на мотораму только сверху.
Для крепления винтов в коптерах начального и среднего уровня очень удобно использовать штатный пропсейвер из комплекта поставки мотора. Он представляет собой втулку с двумя выступающими винтами. В самолетной конструкции винт крепится на него при помощи колечка из жесткой резины. Во время аварии самолета пропеллер просто соскакивает вбок и не ломается. Но для квадрокоптера такой способ совершенно неприемлем и приведет к потере винта в воздухе и аварии! Поэтому винт крепят к пропсейверу при помощи двух нейлоновых стяжек, как показано на рис. 4.9, а. Диаметр отверстия винта может не совпадать с диаметром пропсейвера, поэтому применяются либо переходные кольца из комплекта винта, либо рассверливание отверстия. Осевой люфт винта недопустим!
Рис. 4.9. Монтаж обычного (а) и специального укороченного (б) моторов
Примечание
Чтобы надежно зафиксировать пропсейвер, рекомендуется при помощи алмазного надфиля сделать на валу мотора неглубокие фаски под зажимные винты.
Для рассверливания воздушных винтов настоятельно советуем применять не сверло, а специальную шагово-коническую развтертку (рис. 4.10), которую можно приобрести в магазине слесарных инструментов. Эту покупку следует сделать сразу, потому что первое время винты придется менять часто. В отличие от сверла, развертка самоцентруется в отверстии, ее не надо вставлять в дрель, достаточно зажать в тисках и вращать винт от руки.
Рис. 4.10. Шагово-коническая развертка для воздушных винтов
Цанги-переходники, надеваемые на вал мотора, являются хоть и очевидным, но довольно неудачным способом крепления винта. Они зачастую имеют низкое качество, что приводит к нарушению центровки винта и появлению неустранимой сильной вибрации. Под влиянием вибрации такие цанги часто соскакивают с вала во время полета, либо у них развинчивается гайка, что также приводит к утере винта. Сотни аварий коптеров произошли именно по этой причине. У специализированных моторов зажимной узел имеет насечки, препятствующие проворачиванию винта на валу и отвинчиванию гайки.
Примечание
Некоторые специализированные моторы для коптеров имеют цанги с правой и левой резьбой, в зависимости от рабочего направления вращения. Такие моторы надо покупать парами и монтировать правильно, чтобы направление вращения способствовало затягиванию гайки на валу. Обычно такие моторы имеют маркировку "R" и "L", которая совпадает с маркировкой соответствующих винтов.
Магнитоизоляция
Большие токи, протекающие в силовых проводах питания, порождают магнитное поле вокруг проводников. Это магнитное поле сбивает показания магнетометра — электронного компаса на плате полетного контроллера. Если компас не используется, то магнитными наводками можно пренебречь. Но в большинстве случаев компас необходим при полетах по FPV для указания направления возврати домой, для автовозврата по GPS и для полета по заданным точкам. Компас также необходим в режиме Headfree, когда контроллер автоматически отслеживает по компасу курсовое положение рамы и вычисляет условное направление "вперед".
Если компас будет подвержен наводкам, то алгоритм контроллера все равно отработает прибытие в заданную точку по координатам GPS, но скорость и траектория полета будут далеки от оптимальных. Ситуацию усугубляет то, что магнитные помехи не постоянны, а пропорциональны оборотам несущих винтов.
Для компенсации мощных магнитных наводок самым эффективным решением является вынос микросхемы магнетометра на штанге длиной около 15 см вверх над рамой. Существуют готовые модули, которые состоят из антенны GPS и магнетометра на одной плате, и модули, которые содержат только магнетометр. При наличии радиолюбительского опыта можно отпаять магнетометр с платы контроллера и поместить его на выноснук) плату. Магнетометр соединяется с контроллером по шине I2С, поэтому при использовании внешнего контроллера потребуется настроить адрес магнетометра на шине I2С и в некоторых случаях перерезать проводник, идущий к микросхеме на плате. Это зависит от версии платы и прошивки.
При сборке коптера особое внимание следует уделить правильной укладке силовых проводников. Их длина должна быть минимально возможной; при этом длина положительной и отрицательной шин питания должна быть одинаковой и пролегать они должны параллельно и только рядом, для максимальной взаимной компенсации магнитных полей. Скручивание силовых проводов между собой незначительно уменьшает наводки.
Внимание!
Категорически запрещается укладывать монтажный запас силовых проводов кольцом (рис. 4.11)!
Рис. 4.11. Правильная (а) и неправильная (б) укладка излишка силового провода
Некоторые звукоизлучатели в индикаторах разряда батареи или поисковых маячках содержат очень мощные магниты. Поэтому звукоизлучатели следует монтировать как можно дальше от платы контроллера.
Решение, следует ли выносить магнетометр на штангу, зависит от величины магнитных помех в собранном коптере. В разделе, посвященном интерфейсу настройки коптера, будет рассказано, как проверить величину помех исходя из показаний компаса. Если при пиковом увеличении рабочего тока компас отклоняется не более, чем на 3–5 градусов, то это нормально, и можно больше ничего не предпринимать.
Поскольку через силовую батарею протекает суммарный ток от всех моторов, она тоже является проводником, порождающим магнитное поле вокруг себя. Иногда изменение расположения батареи относительно платы контроллера существенно снижает магнитные наводки.