12.11. Формализация теории множеств
12.11. Формализация теории множеств
Понятие совокупности, или множества, принадлежит к числу фундаментальнейших понятий, данных нам природой, и предшествует понятию числа. В своем первичном виде оно не дифференцируется на понятие конечного и бесконечного множеств, однако, эта дифференциация появляется весьма рано; во всяком случае, в древнейших письменных памятниках мы уже находим понятие о бесконечности и бесконечном множестве. Это понятие использовалось в математике испокон веков, оставаясь чисто интуитивным и само собой разумеющимся, и не подвергаясь специальному рассмотрению, пока Георг Кантор (1845-1918) не создал в 70-х годах свою теорию множеств, которая вскоре легла в основу всей математики. Понятие множества (конечного и бесконечного) остается у Кантора по-прежнему интуитивным, он определяет его следующим образом: «Под множеством понимают объединение в одно целое объектов, хорошо различимых нашей интуицией и нашей мыслью». Это «определение» является, конечно, не в большей степени математическим определением, чем «определение» Евклида «точка есть то, что не имеет частей». Но, несмотря на столь нечеткие исходные позиции, Кантор (опять-таки подобно греческим геометрам) создал стройную и логически последовательную теорию, с помощью которой ему удалось привести в замечательный порядок основные понятия и доказательства математического анализа. («Просто поразительно, — пишет Н.Бурбаки, — какую четкость постепенно приобретают у него понятия, которые, казалось, были безнадежно запутаны в классической концепции континуума».) С теорией множеств математики получили единообразный метод создания новых понятий — конструктов и доказательства их свойств. Так, например, действительное число есть множество всех последовательностей рациональных чисел, имеющих предел; отрезок действительной прямой — множество действительных чисел; функция — множество пар (x, f), где х и f — действительные числа.
К концу XIX в. теория множеств Кантора получает признание и естественным образом сочетается с аксиоматическим методом. Но тут разражается знаменитый «кризис основ» математики, продолжавшийся в течение трех десятилетий. В теории множеств были обнаружены «парадоксы», т. е. построения, приводящие к противоречиям. Первый парадокс обнаружил Бурали-Форти в 1897 г., затем появилось еще несколько. Мы приведем в качестве примера парадокс Рассела (1905 г.), который можно изложить, опираясь лишь на первичные понятия теории множеств и не нарушая в то же время требований математической строгости. Парадокс этот таков. Определим M как множество всех тех множеств, которые не содержат себя в качестве элемента. Казалось бы, это определение вполне законно, ибо образование множеств из множеств — одна из основ теории Кантора. Между тем оно приводит к противоречию. Чтобы сделать его более ясным, обозначим через Р(х) свойство множества х быть элементом самого себя. В символической форме
P(x) ? x ? x. (12.1)
Тогда по определению множества М все его элементы х обладают свойством, противоположным Р(х):
x ? M ? ¬P(x). (12.2)
Теперь поставим вопрос: является ли само множество M своим элементом, т. е. истинно ли P(M)? Если P(M) истинно, то M ? M, согласно определению (12.1). Но в таком случае, подставляя M вместо х в утверждение (12.2), мы получаем ¬P(M). Если M входит в множество M, то по определению последнего оно не должно обладать свойством P. И напротив, если P(M) ложно, т. е. имеет место P(M), то согласно (12.2) М должно входить в M, т. е. Р(М) истинно. Таким образом, P(M) не может быть ни истинным, ни ложным. С точки зрения формальной логики мы доказали две импликации:
P(M) ? ¬P(M), ¬P(M) ? P(M).
Если выразить импликацию через отрицание и дизъюнкцию и воспользоваться свойством дизъюнкции A ? A ? A, то первое высказывание превратится в ¬P(M), а второе — в P(M). Мы получили формальное противоречие и, следовательно, из теории множеств можно вывести что угодно.
Парадоксы создали угрозу для теории множеств и основанного на ней математического анализа; возникло несколько философско-математических направлений, предлагавших различные выходы из тупика. Наиболее радикальное направление во главе с Брауэром, получившее название интуиционизма, потребовало не только полного отказа от теории множеств Кантора, но и коренного пересмотра логики. Интуиционистская математика оказалась довольно сложной и с трудом поддающейся развитию, а поскольку классический анализ при этом выбрасывался на свалку, такая позиция была найдена неприемлемой для большинства математиков. «Никто не может изгнать нас из рая, созданного для нас Кантором», — заявил Гильберт, и он нашел выход, который сохранил основное содержание теории множеств и в то же время устранил парадоксы и противоречия. Вместе со своими последователями Гильберт сформировал главное русло, по которому направилось течение математической мысли.
Решение Гильберта полностью соответствует духу развития европейской математики. Если Кантор рассматривал свою теорию с сугубо платоновских позиций — как исследование свойств реально существующих и действительно («актуально») бесконечных множеств, то, по Гильберту, множества надо рассматривать просто как некоторые объекты, удовлетворяющие аксиомам, аксиомы же надо сформулировать так, чтобы определения, приводящие к парадоксам, стали невозможны. Первая система аксиом теории множеств, не порождающая противоречий, была предложена Цермело в 1908 г., затем она была модифицирована. Были предложены и другие системы, однако отношение к теории множеств осталось неизменным. В современной математике теория множеств играет роль каркаса, скелета, который соединяет в единое целое все ее части, но не виден снаружи и не соприкасается непосредственно с внешним миром.
По-настоящему понять эту ситуацию и совместить формальный и содержательный аспекты математики можно только с «языковой» точки зрения на математику. Эта точка зрения, которую мы настойчиво проводили на протяжении всей книги, приводит к следующей концепции. Никаких актуально бесконечных множеств нет ни в реальности, ни в нашем воображении. Единственное, что мы можем найти в своем воображении, это представление о потенциальной бесконечности, т. е. о возможности неограниченно повторять какой-либо акт. Здесь надо полностью согласиться с интуиционистской критикой канторовской теории множеств и отдать должное ее глубине и проницательности. Однако для того, чтобы использовать теорию множеств так, как это делает современная математика, вовсе не надо насиловать свое воображение и пытаться представить «актуальную» бесконечность. «Множества», которые используются в математике — это просто символы, языковые объекты, используемые для построения моделей действительности. Постулируемые свойства этих объектов частично соответствуют интуитивным понятиям совокупности и потенциальной бесконечности, поэтому интуиция частично помогает в развитии теории множеств, но иногда и обманывает. Когда новый математический (языковый) объект определяется как «множество», построенное так-то и так-то, это определение не имеет никакого значения для связи объекта с внешним миром, т. е. для его интерпретации, а нужно лишь для привязки к каркасу математики, для зацепления внутренних колесиков математических моделей.
Таким образом, язык теории множеств является фактически метаязыком по отношению к языку содержательной математики и в этом он подобен языку логики. Если логика — это теория доказательства математических утверждений, то теория множеств — это теория конструирования математических языковых объектов.
Почему же именно интуитивное понятие множества легло в основу математического конструирования?
Определить вновь вводимый математический объект — значит указать его семантические связи с уже введенными объектами. За исключением тривиального случая, когда речь идет о пере обозначении — замене знака на знак, этих связей всегда бывает много и в них может участвовать много ранее введенных объектов. И вот вместо того, чтобы говорить, что новый объект связан так-то и так-то с такими-то и такими-то старыми объектами, говорят, что новый объект есть множество, построенное так-то и так-то из старых объектов. Например, рациональное число есть результат деления двух натуральных чисел: числителя на знаменатель. Число 5/7 есть объект х такой, что значение функции «числитель» (x) есть 5, а значение функции «знаменатель» (x) есть 7. Между тем в математике определяют рациональное число просто как пару натуральных чисел. Точно так же надо было бы говорить только о реализации действительного числа различными последовательностями рациональных чисел, понимая под этим определенную семантическую связь между новыми и старыми языковыми объектами. Вместо этого говорят, что действительное число есть множество последовательностей рациональных чисел. В настоящее время эту терминологию следует рассматривать как пережиток платоновских воззрений, согласно которым важны не языковые элементы, а скрывающиеся за ними элементы «идеальной реальности»; поэтому, чтобы приобрести право на существование, объект должен был определяться как «реальное» множество. Идея множества выдвинулась на «руководящую работу» в математике как один из аспектов связи имя-значение (а именно того факта, что значением обычно является конструкция, состоящая из некоторого числа элементов), а вряд ли стоит доказывать, что связь имя-значение всегда была и будет основой языкового конструирования.