Ключ к системе ключей
(Длинное письмо в редакцию)
Paнее было высказано мнение, что система дверных ключей в нашем институте сложнее, чем теория поля. Это явное извращение фактов, и чтобы его опровергнуть, в настоящем сообщении мы излагаем упрощённую теоретическую схему, на основе которой создавалась эта система.
Начнём с определений.
Ключ состоит из стержня, на котором укреплены штифты.
Замок состоит из щели с отверстиями, расположенными соответственно позициям штифтов на стержне ключа. Кроме того, в замке имеется система рычажков, находящихся позади отверстий (см. рисунок).
Введём теперь следующие три аксиомы:
1. Штифты поворачивают рычажки; для того чтобы замок открылся, все рычажки в замке должны быть повёрнуты.
2. Если в данной позиции нет штифта, отверстия или рычажка, мы будем говорить в дальнейшем о наличии в данной позиции антиштифта, антиотверстия или антирычажка соответственно.
3. Ни в одном замке нет рычажков за антиотверстиями, ибо такой замок нельзя было бы открыть.
Пусть штифты, отверстия и рычажки описываются значением 1 переменных ai, bi и ci соответственно. Индекс i — номер позиции. Антиштифты, антиотверстия и антирычажки соответствуют значению 0 тех же переменных. Определим теперь матричное умножение следующим способом:
где символическое произведение abc = a, если одновременно c ? b и а ? с, в противном случае abc = 1 — a. Отсюда следует, что если (a1, a2…ak) есть собственный вектор оператора
то ключ может отпереть замок.
Используя этот формализм, легко найти полное число ключей, которые открывают данный замок
а число замков, которые могут быть открыты данным ключом (а), равно
При получении этих выражений учитывался тот факт, что замок
Развитый выше формализм позволил решить следующую задачу. Пусть некто хочет пройти из некоторой комнаты A через несколько дверей в произвольную комнату B. Число ключей, необходимое для этого, максимизировалось при произвольном выборе комнат A и B. (Проблема минимизации не решалась, поскольку её решение тривиально — одинаковые замки.) Затем сотрудники института были разбиты на ряд подгрупп, и система ключей строилась таким образом, чтобы одновременно выполнялись два условия:
1) ни одна подгруппа не в состоянии открыть все те замки, которые могут быть открыты любой другой подгруппой;
2) трансформационные свойства групп соответствуют возможности одалживания ключей.
Создатели системы ключей надеялись, что она является единственно возможной и полной, и до известной степени это справедливо. Однако оказалось, что ключи, которые не должны были бы открывать некоторые двери, открывают их, если их вставлять в замок не до конца. Например, ключ (11111) может открыть замок
На отмычки настоящее исследование не распространяется.
Автор выражает благодарность сотрудникам, работающим в разных группах, за горячее обсуждение затронутых проблем.
????????????
Нильс Бор любил ходить в кино, причём из всех жанров признавал только один — ковбойские вестерны. Когда Бор по вечерам начинал жаловаться на усталость и рассеяность и говорил, что «надо что-то предпринять», все его ученики знали, что лучший способ развлечь профессора — сводить его на что-нибудь вроле «Одинокого всадника» или «Схватки в заброшенном ранчо». После одного из таких просмотров, когда по дороге домой все подсмеивались над непременной и избитой ситуацией — герой всегда хватается за револьвер последним, но успевает выстрелить первым, — Бор неожиданно стал утверждать, что так на самом деле и должно быть. Он развил теорию, согласно которой злодей, собирающийся напасть первым, должен сознательно выбрать момент, когда начать движение, и это замедляет его действия, тогда как реакция героя — акт чисто рефлекторный, и потому он действует быстрее. С бором никто не соглашался, разгорелся спор. Чтобы разрешить его, послали в лавку за парой игрушечных ковбойских револьверов. В последовавшей серии «дуэлей» Бор, выступая в роли положительного героя, «перестрелял» всех своих молодых соперников!
Трудно себе представить, что привлекало Бора в этих картинах. «Я вполне могу допустить, — говорил он, — что хорошенькая героиня, спасаясь бегством, может оказаться на извилистой горной тропе. Менее вероятно, но всё же возможно, что мост над пропастью рухнет как раз в тот момент, когда она на него наступит. Исключительно маловероятно, что в последний момент она схватится за былинку и повиснет над пропастью, но даже с такой возможностью я могу согласиться. Совсем уж трудно, но всё-таки можно поверить в то, что красавец ковбой как раз в это время будет проезжать мимо и выручит несчастную. Но чтобы в этот момент тут же оказался оператор с камерой, готовый заснять все эти волнующие события на плёнку, — уж этому, увольте, я не поверю!»