Поведение вещества в невесомости

Агрегатные и фазовые состояния вещества. При рассмотрении особенностей поведения вещества в космических условиях часто используются такие понятия, как агрегатное и фазовое состояния, фаза и компоненты. Дадим определение этих понятий.

Агрегатные состояния вещества различаются по характеру теплового движения молекул или атомов. Обычно говорят о трех агрегатных состояниях — газообразном, твердом и жидком. В газах молекулы почти не связаны силами притяжения и движутся свободно, заполняя весь сосуд. Структура кристаллических твердых тел характеризуется высокой упорядоченностью — атомы расположены в узлах кристаллической решетки, возле которых они совершают лишь тепловые колебания. В результате кристаллические тела имеют строго ограниченную форму, а при попытке каким-то образом изменить ее возникают значительные упругие силы, противодействующие такому изменению.

Наряду с кристаллами известна и другая разновидность твердых тел — аморфные тела. Главная особенность внутреннего строения аморфных твердых тел — отсутствие полной упорядоченности: лишь в расположении соседних атомов соблюдается порядок, который сменяется хаотическим расположением их друг относительно друга на более значительных расстояниях. Наиболее важный пример аморфного состояния — это стекло.

Тем же самым свойством — ближнего порядка в расположении соседних атомов — обладает вещество в жидком агрегатном состоянии. По этой причине изменение объема жидкости не вызывает в ней возникновения значительных упругих сил, и в обычных условиях жидкость принимает форму сосуда, в котором она находится.

Если вещество состоит из нескольких компонентов (химических элементов или соединений), то его свойства зависят от относительной концентрации этих компонентов, а также от температуры, давления и других параметров. Для характеристики конечного продукта, образующегося при таком комбинировании компонентов, используется понятие фазы. Если рассматриваемое вещество состоит из граничащих друг с другом однородных частей, физические или химические свойства которых различны, то такие части называются фазами. Например, смесь льда и воды представляет собой двухфазную систему, а вода, в которой растворен воздух, — однофазную, потому что в этом случае отсутствует граница раздела между компонентами.

Фазовое состояние — понятие, основанное на структурном представлении термина «фаза». Фазовое состояние вещества определяется только характером взаимного расположения атомов или молекул, а не их относительным движением. Наличие дальнего порядка (полная упорядоченность) соответствует кристаллическому фазовому состоянию, ближнего порядка — аморфному фазовому состоянию, полное отсутствие порядка — газообразному фазовому состоянию.

Фазовое состояние не обязательно совпадает с агрегатным. Например, аморфному фазовому состоянию соответствует обычное жидкое агрегатное состояние и твердое стеклообразное состояние. Твердому агрегатному состоянию соответствуют два фазовых — кристаллическое и аморфное (стеклообразное).

Рис. 2. Диаграмма р—Т равновесия однокомпонентной системы

Переход вещества из одного фазового состояния в другое называется фазовым переходом, или превращением. Если две или больше различных фаз вещества при данных температуре и давлении существуют одновременно, соприкасаясь друг с другом, то говорят о фазовом равновесии. На рис. 2 в качестве примера приведена диаграмма фазового равновесия однокомпонентной системы, построенная в координатах давление (р) — температура (T). Здесь изобара (т. е. прямая постоянного давления) а—а соответствует прямым переходам твердое тело — жидкость (плавление и затвердевание) и жидкость — газ (испарение и конденсация), изобара с—с — переходу твердое тело — газ (сублимация), а изобара в—в — сосуществованию всех трех фаз в так называемой тройной точке, при определенных значениях р и Т.

Влияние невесомости на жидкость. Как влияет тяготение на поведение вещества в различных агрегатных состояниях? В твердых телах атомы и молекулы располагаются в строго определенном порядке, и сила тяготения не может оказать существенного влияния на процессы, происходящие в этом состоянии.

На процессы в газах эта сила может повлиять более значительно. Известно, например, что в условиях неравномерного нагревания различных слоев газа в атмосфере возникает под действием силы тяготения свободная конвекция, т. е. упорядоченный обмен газа между этими слоями. В условиях невесомости этот эффект может не возникнуть.

Но особенно сильное воздействие сила тяготения оказывает на жидкость. При переходе к невесомости в жидкости исчезает сила Архимеда, действующая на компоненты разной плотности и приводящая к их разделению, изменяется характер конвекционных течений, возрастает относительная роль межмолекулярных взаимодействий в жидкости и становится возможным ее свободное удержание вне сосуда (явление левитации). Рассмотрим по этим причинам подробнее процессы, происходящие в жидкости.

Как и в газе, в жидкости молекулы не сохраняют постоянного положения, а за счет тепловой энергии перемещаются с места на место. Если в каком-либо месте жидкости преобладают частицы одного сорта, то за счет более частых столкновений между собой они постепенно переходят в зону, где их концентрация меньше. Этот процесс называется диффузией. Вследствие диффузии за время t происходит смещение частиц на расстояние х = (2Dt)1/2, где D — коэффициент диффузии. Если рассматривать частицы как сферы с радиусом r, то D = W · (??r)–1. Здесь W — тепловая энергия частиц, ? — вязкость жидкости, которая сильно зависит от ее температуры. Когда жидкость охлаждается, то вязкость возрастает и соответственно замедляются процессы диффузии.

Если изменение концентрации частиц одного сорта на расстоянии ?x внутри жидкости равно ?с, то через единичную площадку в 1 с должно проходить число частиц I = — D?c/?x.

Жидкость может содержать несколько компонентов одновременно. Если содержание одного из компонентов мало, то такой компонент рассматривают как примесь. Если в начальный момент примесь распределена в жидкости неравномерно, то диффузионные процессы в жидкости ведут к установлению однородного распределения (гомогенизация).

В некоторых случаях жидкость может содержать компоненты разной плотности. На Земле под действием силы Архимеда постепенно происходит разделение этих компонентов (например, из молока образуются сливки и обрат). В невесомости этого разделения нет, и после затвердевания таких жидкостей могут быть получены вещества с уникальными свойствами. Жидкость может также содержать фазы, которые не смешиваются между собой, например, керосин и воду. На Земле между ними образуются четкие границы раздела. В невесомости путем перемешивания можно получить устойчивую смесь, состоящую из мелких капель той и другой фаз. После затвердевания из подобных смесей разных фаз можно получить однородные композиционные материалы, пенометаллы и т. п.

Возникновение границ раздела между различными фазами в жидкости связано с наличием силы поверхностного натяжения, или капиллярной силы, которая возникает из-за взаимодействия между молекулами жидкости. Поверхностное натяжение можно уподобить силе, которая возвращает в исходное состояние струну, когда музыкант пробует оттянуть ее в сторону. Именно сила поверхностного натяжения приводит к тому, что из плохо закрытого крана падают капли, а не льется тоненькая струйка воды. Но на Земле эти капли невелики: сила тяжести много больше сил поверхностного натяжения и разрывает на части слишком крупные из них. В невесомости ничто не может препятствовать образованию весьма крупных капель, и жидкое тело, предоставленное само себе, будет принимать сферическую форму.

В действительности на борту космического аппарата из-за различного рода малых ускорений состояние невесомости нарушается. Если r — радиус сферы, форму которой принимает жидкость, то действующая на нее капиллярная сила приблизительно равна ?r, где ? — коэффициент поверхностного натяжения. Величина инерционных массовых сил, действующих на жидкость, равна ?gr3, где ? — плотность жидкости, g — малое ускорение. Очевидно, эффекты поверхностного натяжения будут играть главную роль, когда ? · (?gr2)–1 > 1. Этим условием определяется возможность получения в состоянии, близком к невесомости, жидких сфер с радиусом r. Такие жидкие сферы на борту космических аппаратов могут находиться в свободно плавающем состоянии, когда для их удержания не нужны сосуды. Если это жидкий расплав, то при его затвердевании на Земле со стенок сосуда поступают вредные примеси. В космосе можно обойтись без сосуда и, следовательно, получать более чистые вещества.

Тепло- и массообмен в невесомости. Существенное влияние переход к невесомости оказывает также на процессы тепло- и массобмена в жидкостях и газах. Перенос тепла может осуществляться теплопроводностью, конвекцией или излучением, а также любым сочетанием этих механизмов. Теплопроводность — это процесс переноса тепла из зоны с более высокой температурой в зону, где температура ниже, путем диффузии молекул среды между этими зонами. По этой причине коэффициент теплопроводности пропорционален коэффициенту диффузии.

Теплообмен излучением характерен главным образом для твердых и жидких тел и происходит при достаточно высоких температурах. Процессы лучистого теплообмена и теплопроводности не зависят ни от силы тяжести, ни от малых массовых сил, действующих на борту космических аппаратов.

Иное дело конвективный теплообмен. Конвекция — это перенос тепла в жидкой или газообразной среде путем макроскопического перемещения вещества этой среды. Выше уже приводился простейший пример конвекции — свободная (или естественная) конвекция, возникающая вследствие неравномерного распределения температуры в среде, подверженной действию массовых сил (например, силы тяжести или инерционных сил, вызванных малыми ускорениями на борту космического аппарата). Это явление каждый может легко наблюдать у себя дома в любых кипятильниках, когда слои жидкости, имеющие более высокую температуру и вследствие этого более низкую плотность, будут всплывать вверх и переносить с собой теплоту, а на их место, на горячее дно кипятильника, будут опускаться более холодные и плотные слои.

Относительная роль теплообмена за счет свободной конвекции и теплопроводности определяется числом Рэлея:

Здесь g — действующее на систему ускорение, L — характерный размер системы, ? — коэффициент объемного расширения, ?T — перепад температуры в среде, ? — коэффициент теплопроводности, ? — вязкость среды. Отсюда следует, что в условиях, приближающихся к невесомости (g ? 0), Ra ? 0, и, следовательно, ролью конвекции, ведущей к эффективному перемешиванию среды, можно пренебречь.

Этот вывод имеет двоякое значение. Во-первых, уменьшается вклад конвекции в процессы теплообмена, и передача тепла осуществляется более медленным процессом теплопроводности. Во-вторых, исключение конвекционных токов в среде приводит к тому, что основную роль в массообмене будут играть не макроскопические перемещения вещества, а процессы диффузии. А это, в свою очередь, открывает возможность получения веществ, распределение примесей в которых будет значительно более однородным, чем на Земле.

Кроме свободной конвекции, существует целый ряд Других конвекционных эффектов, одна часть которых зависит от массовых сил, а другая нет. Известна также вынужденная конвекция, которая происходит под действием какого-либо внешнего фактора (например, мешалки, насоса и т. п.). В космических условиях этот вид конвекции используют, чтобы обеспечить нужную скорость отвода тепла от работающих агрегатов.

В качестве примера конвекции, не зависящей от массовых сил, укажем термокапиллярную конвекцию, которая выражается в том, что на границе жидкой фазы могут возникать и распространяться волны. Капиллярные волны обусловлены перепадами температуры, из-за наличия которых величина коэффициента поверхностного натяжения непостоянна вдоль поверхности. Этот тип конвекционного течения, очевидно, не зависит от величины g и может приводить к ухудшению однородности материалов, полученных в космических условиях. Способ компенсации вредных последствий этого эффекта состоит в уменьшении фактических перепадов температуры вдоль поверхности раздела фаз.