Магнитные объятия становятся крепче

Несколько лет назад в Институте атомной энергии имени И. В. Курчатова в отделе плазменных исследований, которым руководит Л. А. Арцимович, закончилось строительство установки ПР-5. В нее заложен оригинальный принцип комбинированного поля.

До сих пор испытывались ловушки двух типов — либо с выпуклыми магнитными «стенками» («бутылка с пробками»), либо с вогнутыми («раструбы фанфар»), У каждой из них свои преимущества. Но и свои недостатки. Больное место первой — магнитные объятия слабеют от середины, от оси камеры к ее краям. Плазма всплывает изнутри наружу, как керосин, налитый под воду. У второй ловушки наоборот — магнитные стенки от центра к периферии становятся все плотнее и плотнее. Но в том месте, где «фанфары» соприкасаются, зияет кольцевая щель. Плавные изгибы раструбов обусловлены взаимным отталкиванием встречных полей. Граница вражды становится лазейкой для плазменного сгустка.

А если совместить «бутылку» с «фанфарами»?

Советские физики Ю. Т. Байбородов, Р. И. Соболев и В. М. Петров под руководством кандидата физико-математических наук М. С. Иоффе построили такую гибридную ловушку.

О результатах проведенной на ней работы председатель Государственного комитета по использованию атомной энергии СССР А. М. Петросьянц отзывался так: «В 1962 году на установке ПР-5 удалось подавить гидромагнитную неустойчивость и получить плазму с температурой 40 миллионов градусов и плотностью 1010 частиц/см3. Она устойчиво удерживалась в ловушке в течение сотых долей секунды, то есть в тысячи раз дольше, чем удавалось получить ранее при этой температуре и плотности. Этот результат явился одним из крупных достижений на пути изучения плазмы. Однако этого еще недостаточно для овладения термоядерной энергией: необходимо научиться подавлять другие типы неустойчивостей, получать более плотную и горячую плазму».

Да, более плотную, ибо концентрация составила 10 миллиардов частиц на кубический сантиметр, а нужно в миллион раз, больше. И более горячую: температура в 40 миллионов градусов примерно в 10 раз ниже заветного предела (для дейтериевой плазмы). Наконец, срок, в течение которого плазма должна удерживаться при этих условиях, чуть ли не в сто раз дольше — порядка секунды.

Никто не возьмется указать срок, когда даст ток первая термоядерная электростанция. Но никто не усомнится в том, что на этом пути сделан новый важный шаг, пожалуй, самый значительный за последние годы.

В 1965 году академик Андрей Николаевич Колмогоров и его молодой сотрудник Владимир Арнольд были удостоены Ленинской премии за решение математической проблемы, которая имеет прямое отношение к физике вообще и к ядерной в частности. Речь идет об устойчивости замкнутых механических систем типа солнечной. Метод исследования, разработанный Колмогоровым и Арнольдом, позволил доказать: да, вполне возможно создание термоядерной ловушки, где облачко плазмы, изолированной от стенок, будет удерживаться длительное время.

Сделано многое, но еще больше предстоит сделать впереди, чтобы приблизить новый грандиозный триумф человеческого разума.

— Если удастся добиться плотности в десятки триллионов частиц на кубический сантиметр, можно будет считать, что мы успешно справились с задачей, — говорит академик Л. А. Арцимович. — Разумеется, нужны еще хорошие способы нагревания частиц до сверхвысоких температур. Обращает на себя внимание предложенный Завойским новый метод, в котором для нагревания плазмы используется ее же начальная неустойчивость, исчезающая после такого ее применения.

Оказалось, что можно не просто обезвреживать неустойчивости, но и заставлять их делать доброе дело!

Плазма — чрезвычайно своеобразная субстанция.

От обычного газа она отличается тем, что ее частички заряжены и потому особенно неравнодушны друг к другу, откликаются на малейшие электрические и магнитные воздействия. Но если парные взаимоотношения (например, столкновения) частиц целиком определяют собой свойства газа, то здесь они не играют практически никакой роли. Зато дают себя знать коллективные взаимодействия, когда отдельные скопища ионов или электронов, плазменные сгущения и разрежения выступают как единое целое и активно влияют друг на друга.

Этими явлениями увлекся молодой сотрудник Института ядерной физики (Новосибирск) Р. 3. Сагдеев, ныне член-корреспондент АН СССР. В 1962 году, в тридцатилетнем возрасте, он защитил докторскую диссертацию. Темой для нее он избрал свои теоретические изыскания, согласно которым ударные волны (они несутся со сверхзвуковой скоростью, вызывая сильное сжатие среды) могут возникать и распространяться в разреженной плазме, несмотря на то, что она представляет собой эфемерное, неощутимо бесплотное облачко. Могут, ибо она обладает вполне достаточной упругостью, обусловленной ее специфическими свойствами. Но самое интересное в том, что ударная волна, обычно такая устойчивая, долго не затухающая, здесь, в условиях коллективных взаимодействий, подвержена неустойчивости, способна расплываться, «угасать», даже опрокидываться подобно морскому валу, когда над ним вырастает пенный гребень, загибающийся вперед, а затем падающий к подножию водяного холма. Но, умирая, она передает свою мощь частицам, переводит их потоки, коллективные смещения в беспорядочную суету. На эту особенность обратил внимание академик Е. К. Завойский. Ведь хаотизация плазмы не что иное, как ее разогревание!

В то же время действие сверхбыстрой ударной волны настолько скоротечно, что, задав электронам и ионам хорошую «встряску», разгорячив их, оно не успеет разрушить облачко, хотя и вызовет в нем мимолетные неустойчивости. Именно так — мгновенными мощными импульсами магнитного и электрического поля — в лаборатории Завойского было осуществлено турбулентное нагревание плазмы. Температура ядер поднималась до 30 миллионов градусов, а электронов — до 2 миллиардов!

В наши дни четвертое состояние вещества подвергнуто тщательному теоретическому анализу. Основой расчетов здесь служит знаменитое «уравнение Власова», названное по имени советского ученого, профессора МГУ. В изучении коллективных взаимодействий и неустойчивостей большая заслуга принадлежит харьковчанам Я. Б. Файнбергу и его коллегам.

Интересно: один из двух главных эффектов, к которым сводятся почти все виды неустойчивостей (а их около двадцати), был открыт еще в 1934 году молодым аспирантом профессора С. И. Вавилова Павлом Черенковым. Речь идет об особом свечении, которое испускал электрон, пронизывая какую-то среду.

И. Е. Тамм и И. М. Франк подметили, что скорость электрона при этом превосходила световую.

Разумеется, не в пустоте, а именно в той среде, какую использовал Черенков. За эти исследования Черенков, Тамм и Франк удостоены Нобелевской премии.

Свет в любом твердом, жидком и газообразном (прозрачном) теле распространяется медленнее, чем в абсолютном вакууме. Скажем, в воде он сбавляет свою скорость на четверть. Между тем весьма энергичные электроны в той же среде способны двигаться заметно быстрее: их «темп» порой лишь на десятую долю меньше, чем у того же света в пустоте. И если в вакууме ни одна частица не способна нестись наравне с фотоном, то здесь электрон берет реванш.

Потому-то он и порождает электромагнитные волны, даже если двигается равномерно и прямолинейно. (В других случаях такая возможность исключена. Скажем, в пустоте электрон излучает кванты только тогда, когда он меняет скорость или направление.)

Ситуация напоминает полет артиллерийского снаряда со сверхзвуковой скоростью. Фронт звуковых волн от него имеет форму конуса: сбоку он схож с «усами», разбегающимися по реке от носа катера.

Неспроста мины (реактивные самолеты, ракеты тоже) «воют». По аналогии с ними черенковские электроны получили прозвище «поющих». Кстати, это электромагнитное «бельканто» тоже принимает коническую форму — наподобие светящегося колокола.

Излучение Вавилова — Черенкова легко видеть невооруженным глазом: вода, служащая замедлителем в ядерных реакторах, пронизывается потоками быстрых бета-частиц и вся охвачена голубоватым сиянием.

Плазма несравненно «жиже», чем вода и даже воздух. Тем не менее и в ней проявляется описанный эффект. Излучение быстрых электронов возбуждает в ней колебания, коллективные движения. Изучая этот интересный механизм, Я. Б. Файнберг выяснил природу многих неустойчивостей и наиболее благоприятные условия, в которых они возникают при взаимодействии электронных и ионных пучков с плазмой в магнитном поле. Он подсказал, как их преодолевать, а при случае — использовать.

«Современный уровень термоядерных исследований, — пишут советские ученые И. Н. Головин, Б. Б. Кадомцев и В. Т. Толок в сборнике „Советская атомная наука и техника“, выпущенном к 50-летию Октября, — можно иллюстрировать следующими результатами: на установках „Токамак“ при плотности плазмы 1013 см−3 (10 триллионов частиц в кубическом сантиметре. — Л. Б.) в объеме нескольких сотен литров удается повысить температуру ионов до 1 миллиона градусов Цельсия при времени жизни в несколько миллисекунд. На других установках более высокие температуры и плотность одновременно удавалось до сих пор получать лишь на более короткие промежутки времени, а температуру в сотни миллионов и даже миллиарды градусов и время удержания плазмы порядка секунды — только при очень низкой плотности плазмы».

В одних случаях удалось перешагнуть температурный рубеж, за которым начинается термоядерная реакция, в других увеличить плотность ионно-электронного сгустка и срок его жизни или заметно удлинить быстротечный век плазмы. Но пока ни в одной лаборатории мира еще не научились получать плазму с необходимой концентрацией, энергией и устойчивостью — не порознь, а одновременно. И все же достигнутые результаты настолько значительны, что вселяют уверенность в окончательном успехе.

Впрочем, исследования в области термоядерного синтеза уже принесли плоды — в иных областях обширной нивы знаний. В 1967 году группой ученых и инженеров под руководством академика В. А. Кириллина и члена-корреспондента АН СССР А. Е. Шейндлина пущен опытный магнитогидродинамический генератор. В нем тепловая энергия горючего газа преобразуется прямо в электрическую: ток снимается электродами, введенными в струю пламени (плазма!), которая пронизывает магнитное поле. Со своей стороны, другие науки идут на подмогу термоядерникам.

В 1966 году присуждена Ленинская премия академику В. Л. Гинзбургу, членам-корреспондентам АН СССР А. А. Абрикосову и Л. П. Горькову за работу но сверхпроводящим сплавам, которая во всем мире известна как теория ГЛАГ (Гинзбурга — Ландау — Абрикосова — Горькова; работа академика Л. Д. Ландау отмечена Ленинской и Нобелевской премиями в 1962 году).

Идеи и расчеты советских ученых стали существенным подспорьем для тех, кто занят созданием сверхмощных магнитов с малой затратой электроэнергии.

Такие установки пригодятся конструкторам термоядерных электростанций.

Покорителям плазмы скоро, видимо, придут на помощь удивительные «магнитные хлопушки», предложенные впервые академиком А. Д. Сахаровым и независимо от него профессором Я. П. Терлецким. Идея вкратце заключается в следующем.

Представьте металлический стакан, в котором создано магнитное поле и который снаружи обложен взрывчаткой. Когда заряд детонирует, стенки полого цилиндра съеживаются, будто рука сжимается в кулак. Они увлекают за собой и магнитные силовые линии, мгновенно сгущая их в плотный пучок. Таким путем ученым удалось получить кратковременные магнитные поля рекордной, просто чудовищной мощности — 25 миллионов гаусс! Это в десятки и сотни раз выше, чем получали исследователи любыми иными способами, причем на более дорогих установках. Если бы обмотка обладала сверхпроводимостью, то сконцентрированное поле сохранялось бы сколь угодно долго.

В 1959 году выяснилось, что аналогичные работы начались и в США, затем в Италии и многих иных странах. Недавно в Риме состоялась международная конференция, посвященная этим вопросам. Проблеме импульсных магнитных полей уделил внимание президент АН СССР М. В. Келдыш в своем докладе на XXIII съезде КПСС.

Не исключено, что благодаря открытию Сахарова — Терлецкого удастся добиться прогресса не только в физике плазмы, но и в ускорительной технике, достигнуть энергий, которые пока недосягаемы для самых мощных машин, разгоняющих элементарные частицы.

Раскованным Прометеем назвал атом французский физик Поль Ланжевен, друг и учитель Фредерика Жолио-Кюри. Пожалуй, было бы точнее сравнить с мифическим титаном именно ученого, который выпытал у природы тайну ядерного огнива и поплатился за это.

Подобно орлу, терзавшему живого Прометея, казнит ученого совесть за то, что не смог уберечь страшную силу атома от рук, уничтоживших Хиросиму и Нагасаки. Еще мучают его опасения за судьбу атомного трута и кресала, врученных человеку…

Прекрасная античная легенда повествует о том, как Геркулес, сильнейший из людей, освободил Прометея, разбив своей палицей его оковы и вырвав из груди стальное острие, которым титан был пригвожден к скале. И уж если сравнивать атом с кем-то из мифических героев, то разве не Геркулесом суждено ему быть? Геркулесом, который прибегал к своей могучей палице, только когда уничтожал злых чудищ.

Геркулесом, который совершил столько подвигов во имя человека. Разве советский атом не начал эру мирной ядерной энергетики?

…В Олимпии на высоком подножии стоял многоколонный беломраморный храм. А внутри находилась ля статуя высотой 17 метров, изваянная Фидием — величайшим скульптором Древней Греции. Она изображала величественного старца с посохом в руке, сидящего на троне, — громовержца Зевса, царя всех богов и людей. Того самого, кто в ярости так жестоко отомстил Прометею, похитившему у неба огонь, чтобы передать его людям. Того самого, кто каждый день посылал своего орла выклевывать печень непокорному титану, — изображение жестокой птицы красовалось на рукояти Зевсова жезла. Одним из семи чудес света прослыла огромная фигура бога.

А небольшая статуя Геркулеса, созданная Лисиппом, не была чудом света. Но так уж получилось, что каменный громовержец погиб при пожаре. Творение же Лисиппа сохранилось до наших дней.

Атом достоин стать новым чудом света, но ему не подходит судьба громовержца. Ему не нужна гневная эпитафия истории на обломках новых Хиросим, среди новых чудовищных гекатомб. Неисчерпаемый, он должен принести и принесет прогресс, счастье, мир.

В этом убеждены советские люди, строящие коммунизм. Мы знаем: Прометей будет раскован, если широко распахнуть двери перед дружелюбной силой новоявленного Геркулеса — самой революционной, по выражению Эйнштейна, за все время с тех пор, как человечество овладело огнем.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК