Топливные элементы

We use cookies. Read the Privacy and Cookie Policy

Преобразование одного вида энергии в другой всегда сопровождалось различного вида потерями. Например, в паровозе тепловая энергия от сгорания топлива трансформировалась в механическую путем нескольких преобразований и с большими потерями. При сгорании в топке горючего часть выделенного им тепла безвозвратно терялась с дымом, часть – при перегреве воды в пар, не говоря уже о механических потерях в трущихся деталях. Не вдаваясь в подробности термодинамических процессов, приведем коэффициент полезного действия (КПД) паровоза – он не превышал 7 %, и это с учетом того, что паровоз считался весьма совершенной тепловой машиной по сравнению с более ранними паровыми двигателями.

В современных паровых турбинах КПД гораздо выше. Существуют тепловые двигатели внешнего и внутреннего сгорания. Двигатели внешнего сгорания – это паровые турбины, у которых топливо сгорает в отдельной топке (котле) для производства пара высокого давления, который непосредственно вращает ротор турбины. В двигателях внутреннего сгорания (бензиновых и дизельных) горючее сгорает непосредственно внутри цилиндров, и продукты горения воздействуют непосредственно на поршни, сообщая им движущий момент. В настоящее время самым экономичным тепловым двигателем считается дизельный, его КПД превышает 60 %.

Самыми эффективными источниками механической энергии являются электрические двигатели с КПД более 90 %, но их основной недостаток – потребность в источнике электроэнергии.

Преобразование (конвертация) химической энергии топлива в электрическую на тепловых электростанциях сопровождается большими потерями: только треть первичной энергии становиться электрической. Так происходит из-за того, что, прежде чем стать электрической, химическая энергия, выделяющаяся в результате горения, не раз меняет свое «лицо». Вначале тепловая энергия топлива превращается в энергию пара. Затем энергия пара на роторе турбины преобразуется в механическую энергию вращения. И наконец, в обмотках генератора механическая энергия становится электрической. На каждом этапе неизбежны потери.

Электрическая энергия в плане конвертации самая удобная. Именно поэтому всегда проявлялся повышенный интерес к разработке различных более экологичных способов получения электроэнергии с минимальными потерями. Ветроэлектрогенераторы и солнечные элементы слишком зависимы от капризов погоды и не всегда могут выдать необходимую мощность, но, кроме них, весьма перспективным направлением преобразования химической энергии в электрическую являются топливные элементы.

В топливном элементе химическая энергия «горящего» топлива сразу конвертируется в электрическую. Необходимо пояснить, почему слово «горящий» поставлено в кавычки. Топливный элемент, или электрохимический генератор, – это устройство, в котором протекает реакция окисления топлива, в результате которой вырабатывается электроэнергия. Топливом могут служить водород, аммиак и различные углеводороды (спирты, природный газ, нефть и т. д.), а окислителем (горение есть процесс окисления) – кислород, азотная кислота и др. Чаще всего применяют водородно-кислородные топливные элементы.

Конструктивно топливный элемент не очень сложный, но для полного понимании природы его работы вам могут понадобится некоторые основы знаний по химии и физике. Итак, топливный элемент, или их еще называют топливными ячейками, – это емкость с электролитом (водным раствором кислоты или щелочи), двумя пористыми электродами (анодом и катодом, как в аккумуляторной батарее) и трубками для подачи топлива на анод и окислителя на катод. На аноде молекулы водорода распадаются на атомы, которые теряют свои электроны, становятся положительными ионами и переходят в электролит. Потерявший ионы анод приобретает отрицательный заряд по отношению к другому электроду, и свободные электроны движутся к последнему по внешней цепи. Там они соединяются с атомами кислорода, образуя отрицательные ионы. Эти ионы, проходя через электролит, соединяются с положительными ионами водорода. В результате возникает замкнутая цепь, по которой идет электрический ток, и топливный элемент становится электрогенератором. Побочным продуктом работы такого устройства является дистиллированная вода.

Одиночный топливный элемент создает напряжение около 1,5 В. Для получения более высокого напряжения необходимо последовательно соединять друг с другом несколько таких элементов в батареи.

В виду невысокой мощности и достаточной дороговизны в настоящее время ведутся активные работы по совершенствованию батарей из топливных элементов. Сейчас такие источники энергии используют для обеспечения электричеством глубоководных аппаратов, околоземных космических станций и на некоторых экспериментальных электромобилях.