Программа «Меркурий»
Программа «Меркурий»
Практически в течение того же периода времени, начиная с 1958 г., в США также широким фронтом развернулись работы по осуществлению первой в этой стране пилотируемой космической программы «Меркурий». В конце 50-х годов в США не было достаточно мощной РН, и поэтому одновременно с работой над самим КК спешно на базе имевшейся ракеты создавалась и РН.
Испытания проводились в несколько этапов: вначале беспилотные отработочные полеты, затем два первых полета американских космонавтов (А. Шепард и В. Гриссом) по баллистической траектории на высоту до 190 км и полет КК с обезьяной на борту с выходом на орбиту искусственного спутника Земли. И, наконец, первый орбитальный 3-витковый полет совершил 20 февраля 1962 г. Дж. Гленн (КК «Френдшип-7»).
РН «Атлас-Ди», которая использовалась для орбитальных полетов, была способна выводить на низкую околоземную орбиту (с перигеем 160 км и апогеем 260 км) полезную нагрузку массой не более 1,35 т при стартовой массе 111,3 т. Поэтому КК «Меркурий» создавался при крайне жестких массогабаритных ограничениях, что наложило отпечаток на его компоновку, конструкцию и выбор основных систем.
Рис. 4. Компоновка КК «Меркурий»: 1 — космонавт, 2 — ферма двигательной установки САС, 3 — сбрасываемая связка двигателей тормозной двигательной установки, 4 — кресло космонавта, 5 — ручка включения САС, 6 — пульт космонавта, 7 — герметичная кабина, 8 — основной и запасной парашюты, 9 — сопла управления по тангажу, 10 — баки с перекисью водорода, 11 — вытяжной парашют, 12 — основной двигатель двигательной установки САС, 13 — двигатель сброса и увода двигательной установки САС, 14 — датчик инфракрасной вертикали, 15 — двигатели управления по рысканию (курсу), 16 — перископ, 17 — ручка управления ориентацией КК, 18 — двигатели управления по крену, 19 — теплозащитный экран
Основу КК «Меркурий» (рис. 4) составляла возвращаемая на Землю капсула (как ее назвали американские специалисты). В отличие от СА корабля «Восток» капсула имела форму усеченного конуса (со сферическим днищем) диаметром 1,89 м и цилиндрической верхней частью, в которой размещались парашюты. При возвращении на Землю капсула совершала неуправляемый баллистический спуск при торможении в атмосфере вперед днищем, которое испытывало при этом наибольший нагрев. Коническая и цилиндрическая поверхности капсулы подвергались гораздо меньшему нагреву. Поэтому тяжелый теплозащитный экран устанавливался только на днище (за счет этого удалось уменьшить общую массу теплозащиты до 380 кг).
В передней части КК располагались антенная и парашютная секции, а на заднем днище корабля устанавливался блок из трех тормозных двигателей.
Внутри герметичной кабины с внутренним свободным объемом 1,1 м3 космонавт, одетый в герметичный; скафандр, размещался в кресле, перед ним находились иллюминатор и пульт управления. В случае аварии РН. на старте и в полете до отделения двигателей первой ступени предусматривался увод всего КК с помощью порохового двигателя САС, который размещался на ферме над кораблем (см. рис. 4) и мог включаться по командам автоматики с Земли или космонавтом.
Система жизнеобеспечения КК «Меркурий» существенно отличалась от аналогичной системы КК «Восток». Прежде всего, и это относится к последующим американским КК «Джемини» и «Аполлон», внутри кабины создавалась чисто кислородная атмосфера с давлением 228–289 мм рт. ст. Далее, по мере потребления, кислород, который на КК «Меркурий» хранился в газообразном состоянии в баллонах высокого давления, подавался в кабину и скафандр космонавта.
Для удаления углекислого газа использовалась система с гидроокисью лития. На случай возникновения пожара на орбите предусматривалась разгерметизация капсулы, жизнедеятельность космонавта в этом случае поддерживалась системой жизнеобеспечения скафандра. Скафандр охлаждался кислородом, который подавался к нижней части тела и использовался также для дыхания.
Температура и влажность воздуха поддерживались с помощью теплообменников испарительного типа. В первых образцах системы влага собиралась с помощью губки, которая периодически отжималась; однако в условиях невесомости такая система работала неудовлетворительно, вода скапливалась на стенках трубок. В последующих модификациях системы этого КК (а также позднее на КК «Джемини» и «Аполлон») применили фитильный способ сбора конденсата.
Система жизнеобеспечения и другие системы КК «Меркурий» были рассчитаны на полет до 1,5 сут. Самый длительный полет (Г. Купера в 1963 г.) продолжался 34 ч 20 мин.
Электропитание систем обеспечивалось аккумуляторными батареями (три основные, одна независимая для питания пиросредств и две резервные) с напряжением 24 В и суммарной емкостью 68,7 А.ч. Часть аппаратуры КК «Меркурий» требовала переменного тока, который получался при помощи статических преобразователей. Характерной особенностью конструкции КК «Меркурий» (а также КК «Джемини» и «Аполлон») являлась однопроводная система электропитания, подобная применяемой в большинстве самолетов и автомобилей. Такая система проще и легче двухпроводной, однако в принципе больше подвержена отказам.
Для повышения надежности широко использовалось дублирование и другие типы резервирования электрических и электронных элементов, а также защита от короткого замыкания в различных системах. КК «Меркурий» проектировался и испытывался как в пилотируемом, так и в беспилотном вариантах. На начальной стадии работ у американских специалистов не было уверенности в том, сможет ли человек в условиях космического полета эффективно управлять кораблем, и поэтому основные системы имели как ручные, так и автоматические контуры управления.
Основной операцией, которая выполнялась системой навигации и ориентации КК «Меркурий», был разворот корабля в нужный момент в такое положение, при котором импульс тормозной двигательной установки обеспечивал спуск в атмосферу Земли. Эта задача решалась с помощью гиростабилизированной платформы. В процессе полета уходы платформы корректировались, величины коррекции вырабатывались посредством датчиков горизонта (по тангажу и крену) и гирокомпаса (по курсу).
Датчик горизонта (в отечественной технике его обычно называют инфракрасной вертикалью) представлял собой прибор (как правило, сканирующего типа), который воспринимал тепловой поток, излучаемый атмосферой Земли, и определял ось симметрии этого потока (иными словами, местную вертикаль).
Включение тормозной двигательной установки и других систем КК в автоматическом режиме осуществлялось от программно-временного устройства, проводившего отсчет времени начиная со старта РН. В пилотируемом полете космонавт мог производить все операции вручную; он ориентировал КК по всем углам, наблюдая Землю в иллюминатор.
Для управления ориентацией КК «Меркурий» было установлено 18 управляющих двигателей реактивной системы управления, работавших на однокомпонентном топливе (перекиси водорода). В присутствии катализатора перекись водорода разлагается с выделением большого количества тепла. За счет высокой температуры образующегося при этом парогаза удельные характеристики такого топлива значительно выше, чем у систем, работающих на холодном газе. Кроме того, масса и габариты баллонов для хранения перекиси также меньше.
Однако перекисная система гораздо сложнее воздушной. Разложение перекиси водорода происходит непосредственно в камерах двигателей, где для этого помещается специальный катализатор. Такие двигатели обладают рядом особенностей и недостатков (низкими динамическими характеристиками, большим импульсом последействия и т. д.). Поэтому, несмотря на сравнительно простую и непродолжительную программу полета на КК «Меркурий», пришлось установить два независимых комплекта управляющих двигателей. Причем в каждый комплект входили двигатели с большой и малой тягой. Первые (тяга 26 и 108 Н) использовались для разворота КК и стабилизации при работе тормозной двигательной установки, вторые (4,4 Н) — для поддержания заданной ориентации в орбитальном полете. При использовании двигателей малой тяги экономилось топливо и повышалась точность ориентации.
Управляющие двигатели были снабжены клапанами подачи перекиси водорода непосредственно от ручки управления (с приводом от механических тяг) и электроклапанами для дистанционного и автоматического управления. Система тяг усложнила и без того очень насыщенную компоновку кабины КК, а также очень затруднила ее наземное обслуживание и особенно, как отмечали американские специалисты, проведение работ по устранению неисправностей.
После срабатывания тормозной двигательной установки (при тяге 13,2 кН) и торможения в атмосфере спуск капсулы КК заканчивался на водной поверхности. На корабле «Меркурий» применялась система, состоявшая из тормозного и основного, а также и запасного парашютов. Тормозной парашют выполнял также функции вытяжного. Дополнительно для выталкивания парашютов из контейнера применялись пневматические баллоны. Для улучшения остойчивости в воде запасной парашют после раскрытия основного тоже выталкивался с помощью пневмобаллона.
Посадка на воду (приводнялись впоследствии и КК «Джемини» и «Аполлон») была выбрана в основном потому, что наиболее вероятным районом посадки был океан (при малых наклонениях плоскости орбиты) как при нормальном выполнении полета, так и в аварийной ситуации (при срабатывании САС) и экстренной посадке. Кроме того, учитывалось, что на водной поверхности отсутствуют различные препятствия (строения, деревья и т. д.), а вода неплохо гасит удар. В то же время при приводнении приходится учитывать волнение и другие морские факторы. Непросто было надежно обеспечивать и плавучесть капсулы; для этого принимался ряд специальных мер.
Тем не менее при завершении второго суборбитального пилотируемого полета КК «Меркурий» капсула затонула, но американскому космонавту, к счастью, удалось спастись.
В принципе конструкция КК мало зависит от того, выбирается ли в качестве основного варианта приводнение или приземление на сушу. В обоих вариантах необходимо обеспечить и ту и другую возможность. Однако при средних ожидаемых условиях посадки на данном КК при приводнении возникают меньшие перегрузки. В частности, поэтому вертикальная скорость спуска на парашюте у поверхности Земли для всех КК различается незначительно. Для КК «Меркурий» эта скорость равнялась около 9 м/с.
Для снижения перегрузок при ударе о воду после развертывания основного парашюта днище капсулы (передний теплозащитный экран) отделялось от основного корпуса и под действием силы веса выдвигалось на 1,2 м, растягивая амортизатор из прорезиненной ткани. При ударе этот амортизатор поглощал энергию. За время спуска на парашюте передний теплозащитный экран КК «Меркурий» и других кораблей не успевал полностью охлаждаться и при погружении в воду, по словам американских космонавтов, шипел, как раскаленная сковорода под струей холодной воды.
Для выхода из капсулы можно было воспользоваться двумя люками. Крышка первого бокового люка, служившего также для посадки в КК, крепилась болтами и для быстрого открытия снабжалась пиросредствами с возможностью их включения как изнутри, так и снаружи капсулы. После посадки на воду космонавт мог самостоятельно использовать второй люк в носовой части. Для этого требовалось сместить панель пульта, снять герметическую перегородку, вытолкнуть пустой парашютный контейнер, выползти наружу, развернуть надувной плот и спрыгнуть в него.
Благодаря выдвинутому вниз экрану капсула сохраняла остойчивость при всех этих операциях и различных погодных условиях.
При запуске, в орбитальном полете и при посадке КК «Меркурий» применялся комплекс радиосредств, который состоял из основного и наземного (работавшего после приводнения) УКВ- и КВ-приемопередатчиков, телеметрического передатчика, командного приемника и радиомаяков.
Много внимания было уделено средствам обнаружения КК после посадки. Кроме радиомаяков и приемопередатчиков использовались проблесковые огни, рассчитанные на 28 ч работы, и окрашивание водной поверхности, для того чтобы облегчить обнаружение капсулы как днем, так и ночью при различных условиях видимости. В дополнение к этим средствам при развертывании основного парашюта с КК сбрасывалась акустическая глубинная бомба. Ее взрыв пеленговался на кораблях поисково-спасательной службы.
Американские КК, совершавшие посадку на воду, не были рассчитаны на длительное поддержание плавучести. Поэтому спасательная служба стремилась как можно скорее обнаружить и закрепить на приводнившемся КК вспомогательное плавсредство, по форме напоминавшее спасательный круг.
Всего на КК «Меркурий» совершили полет 6 космонавтов.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Глава 3. Программа
Глава 3. Программа Полное её название «Рабочая программа испытаний турбогенератора № 8 Чернобыльской АЭС в режимах совместного выбега с нагрузкой собственных нужд».Ничего выдающегося в Программе нет, обычная программа, нормально написанная. Известность она получила
Программа «HYWARDS»
Программа «HYWARDS» В поддержку проектов «РоБо» и «Брасс Белл» ВВС инициализировали программу исследований, названную «Программа изучения гиперзвукового оружия» — «Хьювардс» («HYWARDS»).Решаемые в ее рамках задачи были впервые сформулированы в требованиях к перспективному
Программа «Lunex»
Программа «Lunex» Серьезной альтернативой программе «Аполлон» могла стать секретная программа высадки на Луну, подготовленная командованием ВВС США и известная ныне под названием «Лунэкс» («Lunex» — от «Lunar Expedition»). Эта программа была представлена на рассмотрение
Программа «ASAT»
Программа «ASAT» В конечном итоге американские военные остановили свой выбор на системе «АСАТ» («ASAT» — сокращение от «Air-Launched Anti-Satellite Missile»), предусматривающей размещение антиспутниковых ракет на боевых самолетах.Авиационный ракетный комплекс перехвата «АСАТ»
Программа «Холод»
Программа «Холод» Выше я уже упоминал, что с 1993 по 1996 год по заказу Российского космического агентства в рамках поддержанной государством научно-исследовательской и экспериментальной программы «Орел» проводились исследования тенденций развития и возможностей
Программа «СОИ»
Программа «СОИ» Как очень быстро выяснилось, ассигнования на «СОИ», предусмотренные бюджетом, не могли обеспечить успешного решения грандиозных задач, поставленных перед программой. Не случайно многие эксперты оценивали реальные расходы на программу в течение всего
Программа «Фон»
Программа «Фон» В начале 70-х годов в СССР были проведены научно-исследовательские и опытно-конструкторские работы по программе «Фон» с целью создания перспективной системы ПРО. Суть программы состояла в создании системы, которая позволила бы держать «на прицеле» все
Программа
Программа Блок-схема программы изображена на рис. 8.17. После включения питания ходовой двигатель отключен, и микроконтроллер начинает искать наиболее яркий источник света, поворачивая сервомотор. Если источник света имеет слишком большую яркость, то включается режим
Программа 1
Программа 1 ‘Микроконтроллер 1start:High 4: low 4 ‘Мигание светодиодаb7 = 0button 5,0,255,0,b7,1,avoid ‘Проверка препятствияpot 7, 255, b0 ‘Считывание датчика CdS 1pot 6, 255, b1 ‘Считывание датчика CdS 2if b0 <= 250 then skip ‘Достаточно темно?If b1 >= 250 then slp ‘Даskip: ‘Нетif bo > 25 then skip 2 ‘Слишком много светаif b1 < 25
Программа 2
Программа 2 ‘Микроконтроллер 2b4 = 150 ‘Установка среднего положения сервомотораstart:peek 6, b1 ‘Чтение данных микроконтроллера 1let b0 = b1 & 7 ‘Маскирование кроме первых трех битовif b0 = 0 then slp ‘Время спячкиif b0 = 1 then rt ‘Поворот направоif b0 = 2 then lt ‘Поворот налевоif b0 = 3 then fw ‘Движение
Программа для микроконтроллера
Программа для микроконтроллера Микроконтроллер 16F84 управляет работой трех сервомоторов. Наличие большого числа незадействованных шин ввода/вывода и места под программу предоставляет возможность совершенствования и модификации базовой модели
Программа PICBASIC
Программа PICBASIC ‘Шестиногий шагающий робот‘Соединения‘Левый сервомотор Pin RB1‘Правый сервомотор Pin RB2‘Сервомотор наклона Pin RB0‘Движение только впередstart:for B0 = 1 to 60pulsout 0, 155 ‘Наклон по часовой стрелке, подъем правой стороныpulsout 1, 145 ‘Левые ноги на местеpulsout 2, 145 ‘Правые
Программа на BASIC
Программа на BASIC Программа на BASIC очень проста. После нахождения адреса порта прин тера, программа управляет работой воздушного клапана через вывод 2.5 REM Контроллер соленоида воздушного клапана10 REM Джон Иовин15 REM Найти адрес порта принтера20 DEF SEG = 025 a = (PEEK(1032) + 256 * PEEK(1033))30 REM
Программа «Аполлон»
Программа «Аполлон» Под этим названием в 60-х годах в США проводился огромный комплекс работ, основной задачей которого была высадка человека на Луну. Выполнение программы, престижное значение которой занимало далеко не последнее место, потребовало израсходования около
Программа ЭПАС
Программа ЭПАС Около полутора десятилетий космическая техника в СССР и США развивалась относительно независимо. Одним из мотивов объединения усилий явилось стремление иметь возможность оказывать взаимную помощь в космосе. Для этого необходима была прежде всего
Программа «ТУ-204»
Программа «ТУ-204» На 38-ом Международном авиасалоне, проходившем в 1989 г. на парижском аэродроме «Ле Бурже», в экспозиции советской авиакосмической техники внешнеэкономическое объединение «Авиаэкспорт» впервые продемонстрировало магистральный самолет Ту-204 с