8.4. Метод встраивания информации за счет энергетической разности между коэффициентами
8.4. Метод встраивания информации за счет энергетической разности между коэффициентами
Далее описывается метод, сочетающий в себе достоинства методов, работающих с исходным и сжатым видео. В его основе лежит дифференциальное встраивание энергии (ДЭВ) ЦВЗ [3]-6].
В случае MPEG/JPEG кодированных видеоданных ДЭВ может быть осуществлено в области коэффициентов. Сложность алгоритма ДЭВ незначительно выше сложности описанного ранее метода, основанного на НЗБ, и значительно ниже метода основанного на корреляции с компенсацией ошибок предсказания, также описанного ранее. Метод ДЭВ может быть применен не только к видеоданным MPEG/JPEG, но и к другим алгоритмам сжатия видео, например, к вейвлет-кодеру нуль-дерева [13].
Метод ДЭВ осуществляет внедрение ЦВЗ, состоящего из l бит bj (j = 0, 1, 2, …, l-1) в I-кадры MPEG-видео или в JPEG-изображения. Каждый бит ЦВЗ встраивается в выбранную область, состоящую из n блоков по 8*8 коэффициентов ДКП канала яркости изображения каждый.
На рис. 8.12 показан пример, в котором первый бит ЦВЗ расположен в верхнем левом углу изображения или I-кадра в выбранной области, состоящей из 16 (n=16) блоков 8*8 коэффициентов ДКП. Размер этой области определяет скорость вложения информации. Чем выше n, тем ниже скорость.
Бит ЦВЗ внедряется в выбранную область модификацией разности энергий D между высокочастотными коэффициентами ДКП верхней части этой области (субобласть А) и ее нижней части (субобласть В). Подмножество ВЧ коэффициентов обозначается S(c) и показано на рис. 8.13 белыми треугольниками.
Энергия субобласти А вычисляется по формуле
, (8.4)
где
- коэффициент ДКП с индексом i из d-го блока коэффициентов ДКП субобласти А; []Q — означает, что энергия вычисляется у квантованных коэффициентов.
Рис. 8.12. Позиции битов ЦВЗ в I-кадре.
Энергия субобласти В вычисляется аналогичным способом.
Подмножество S(с) определяется на основе выбранного порога
. (8.5)
Выбор подходящего значения порога крайне важен, так как этим определяется стойкость ЦВЗ к удалению и его заметность на изображении. Когда порог для каждой lc-области определен, разность энергий определяется следующим образом:
. (8.6)
На рисунке 8.13 графически показана процедура вычисления разности энергий для области, состоящей из 16 блоков 8*8 коэффициентов ДКП.
Значение внедряемого бита определяет знак энергетической разности. Если значение бита «0» то D > 0, в противном случае D < 0. Следовательно, процедура встраивания информации модифицирует энергии ЕА или ЕВ, чтобы встроить информацию в разность энергий D. Если встраивается нуль, то в блоках по 8*8 коэффициентов субобласти В после пороговой обработки энергия будет удалена, а коэффициенты ДКП приравнены нулю так, что
Рис. 8.13. Определение энергии областей
. (8.7)
Если встраивается единица, то высокочастотные коэффициенты ДКП в субобласти А приравниваются нулю и
. 8.8
Существует несколько причин, по которым вычисление энергий осуществляется по блокам треугольной формы. Наиболее важной из них является то, что, таким образом легко производить вычисление энергетической разности и модификацию значений энергии в потоке сжатых данных. Все коэффициенты ДКП, необходимые для вычисления ЕА и ЕВ, расположены в конце одномерного массива, полученного после зигзагообразного сканирования. Таким образом, коэффициенты могут быть приравнены нулю без перекодирования потока данных. Для этого необходимо просто сдвинуть маркер конца блока (КБ) в сторону DC-коэффициента. Процедура вычисления Е для единичного сжатого блока коэффициентов и изменения Е путем удаления высокочастотных коэффициентов ДКП, расположенных в конце макроблока, показана на рисунке 8.14.
Рис. 8.14. Вычисление и изменение энергии в lc-областях
Тот факт, что ЦВЗ встраивается просто путем удаления нескольких коэффициентов ДКП имеет сразу два преимущества. Так как в сжатый поток видеоданных ничего добавлять не надо, то можно обойтись без повторного сжатия восстановленного потока видео, как это показано на рисунке 8.15. Это означает, что алгоритм ДЭВ имеет приблизительно половинную сложность по сравнению с методами встраивания информации в коэффициенты.
Рис. 8.15. Встраивание водяного знака методом ДЭВ.
Удаление высокочастотных коэффициентов будет уменьшать размер стегообраза потока сжатых видеоданных по сравнению с исходным потоком. Если необходимо сохранить размер потока видеоданных, то перед каждым макроблоком нужно вносить добавочные биты.
Центральную роль, как в процессе встраивания, так и в процессе извлечения встроенной информации играют энергии субобластей А и В, величина которых определяется четырьмя факторами:
— характером субобластей А и В;
— количеством блоков n на одну выбранную область;
— шагом квантователя;
— размером подмножества S(c).
Если выбранная область однородная, то ее энергия будет содержаться в DC-коэффициенте ДКП. Энергия ВЧ коэффициентов равна нулю. В случае наличия контуров или текстур значения ВЧ коэффициентов будут большими.
Чем больше блоков n берется на одну выбранную область, тем больше значение содержащейся в ней энергии.
Шаг квантователя определяет стойкость ЦВЗ к атаке перекодированием. При перекодировании стегоообраз видеоданных частично или полностью декодируется и затем снова кодируется, но уже на более низкой скорости. Чем меньше шаг квантователя, тем более водяной знак стоек по отношению к атаке перекодированием. Однако, одновременно уменьшается и величина энергии в выбранной области.
Размер подмножества S(с) определяется порогом с. Если после зигзагообразного переупорядочивания коэффициенты ДКП пронумерованы от 0 до 63, причем индексу 0 соответствует коэффициент постоянного тока, а индексу 63 наиболее высокочастотный коэффициент ДКП, то подмножество S(с) будет состоять из коэффициентов ДКП с индексами с … 63 (с>0). На рисунке 8.16 показаны примеры подмножеств S(с) и соответствующих им энергий.
Для увеличения разности энергий необходимо, чтобы в процессе встраивания информации участвовало как можно больше коэффициентов ДКП. Но чрезмерное увеличение размера подмножества S(c) приведет к заметным визуальным искажениям. Это означает, что для каждой выбранной области необходимо найти такое минимальное по размерам подмножество, для которого можно было бы достичь необходимой разницы энергий.
НЧ коэффициенты ДКП модифицировать нежелательно, так как это может ухудшить визуальное качество видео. Поэтому, порог должен быть не меньше определенного значения сmin. Для определения подходящего с может быть использована следующая формула
. (8.9)
Рис. 8.16. Примеры подмножеств S(c) и соответствующих им энергий.
На рисунке 8.17 показан пример внедрения бита «0» при разнице энергий D=500 и выбранной области, состоящей из двух блоков по 8*8 коэффициентов ДКП. В этом случае максимальный порог с, при котором энергия субобласти ЕА превышает 500 равен 35, а для энергии субобласти EB равен 36. Из этого следует, что для того, чтобы энергии «хватало» в обеих субобластях необходимо выбрать порог с=38. Для встраивания бита b0=0 все коэффициенты ДКП в субобласти В, начиная с 35, приравниваются нулю.
Рис. 8.17. Встраивание бита в область, состоящую из двух блоков ДКП.
Для извлечения встроенного бита получателю снова необходимо найти порог с. Но теперь берется уже максимум по всем порогам для субобластей А и В.
. (8.10)
Естественно, что для правильной работы алгоритма необходимо, чтобы Q?=Q и D?=D. Порог обнаружения D? определяет помехоустойчивость схемы встраивания водяного знака.
Оценка качеств схемы встраивания водяного знака ДЭВ была проведена Г.Лангелларом [6].
Для определения пропускной способности алгоритм ДЭВ был применен к тестовой видеозаписи, сжатой при различных скоростях. Экспертные оценки показали, что встроенные водяные знаки незаметны при n=32 и скорости кодирования видеоданных 6 и 8 мбит/с. При кодировании видеоданных на более низких скоростях появляются искажения возле контуров. Устранить искажения можно увеличением числа блоков ДКП, приходящихся на одну выбранную область. Проведенные исследования показали, что алгоритм ДЭВ позволяет осуществлять встраивание информации в цифровой поток 6–8 мбит/с со скоростью 0,42 кбит/с практически без искажений.
Алгоритм ДЭВ вносит в видео несколько меньше искажений, чем описанный ранее метод встраивания информации в НЗБ.
Другим положительным свойством алгоритма ДЭВ является то, что для удаления ЦВЗ требуется проведение вычислительных операций, более сложных, чем встраивание нового произвольного водяного знака.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
2. Закон «энергетической проводимости» системы
2. Закон «энергетической проводимости» системы Необходимым условием принципиальной жизнеспособности технической системы является скво з ной проход энергии по всем частям системы. Любая техническая система является преобразователем энергии. Отсюда очевидная
9.2. Счет и измерение
9.2. Счет и измерение Факты убедительно свидетельствуют о том, что счет возникает раньше, чем названия чисел. Иначе говоря, первоначально языковыми объектами для построения модели служат не слова, а выделенные однотипные предметы: пальцы, камешки, узелки, черточки. Это и
Деньги любят счет
Деньги любят счет Старый «золотой стандарт»[28], ограничивавший количество находящихся в обращении бумажных денег золотым запасом государства, обладал немаловажным достоинством: он не позволял правительству печатать столько денег, сколько ему заблагорассудится.
1.19. Четырехкратное увеличение энергетической производительности пятью маленькими шагами
1.19. Четырехкратное увеличение энергетической производительности пятью маленькими шагами Добиться повышения производительности энергоресурсов за один большой этап не всегда удается. Но ведь можно сделать это за несколько небольших этапов. Проиллюстрируем это простым
Глава 20 Движение за счет «внутренних сил»
Глава 20 Движение за счет «внутренних сил» Российское патентное ведомство, как известно, не принимает заявки на патент, если в нем описано «движение тела за счет внутренних сил». Это правильно, но нельзя забывать о том, что все тела находятся в постоянном взаимодействии и
1.5. Некоторые практические вопросы встраивания данных
1.5. Некоторые практические вопросы встраивания данных Часто используют следующий принцип встраивания данных. Пусть сигнал контейнера представлен последовательностью из n бит. Процесс скрытия информации начинается с определения бит контейнера, которые можно изменять
6. ОБЗОР СТЕГОАЛГОРИТМОВ ВСТРАИВАНИЯ ИНФОРМАЦИИ В ИЗОБРАЖЕНИЯ
6. ОБЗОР СТЕГОАЛГОРИТМОВ ВСТРАИВАНИЯ ИНФОРМАЦИИ В ИЗОБРАЖЕНИЯ По способу встраивания информации стегоалгоритмы можно разделить на линейные (аддитивные), нелинейные и другие. Алгоритмы аддитивного внедрения информации заключаются в линейной модификации исходного
6.1.1. Обзор алгоритмов на основе линейного встраивания данных
6.1.1. Обзор алгоритмов на основе линейного встраивания данных В аддитивных методах внедрения ЦВЗ представляет собой последовательность чисел wi длины N, которая внедряется в выбранное подмножество отсчетов исходного изображения f. Основное и наиболее часто используемое
6.2.1. Принципы встраивания информации с использованием квантования. Дизеризованные квантователи
6.2.1. Принципы встраивания информации с использованием квантования. Дизеризованные квантователи Под квантованием понимается процесс сопоставления большого (возможно и бесконечного) множества значений с некоторым конечным множеством чисел. Понятно, что при этом
6.2.2. Обзор алгоритмов встраивания ЦВЗ с использованием скалярного квантования
6.2.2. Обзор алгоритмов встраивания ЦВЗ с использованием скалярного квантования А31 (C.-J. Chu [44]). В данном алгоритме к цветному изображению первоначально применяется пятиуровневое целочисленное вейвлет-преобразование. ЦВЗ представляет собой последовательность ±1.
7.3. Встраивание информации за счет изменения времени задержки эхо-сигнала
7.3. Встраивание информации за счет изменения времени задержки эхо-сигнала Теми же авторами был предложен метод внедрения информации с использованием эхо-сигнала.Этот метод позволяет внедрять данные в сигнал прикрытия, изменяя параметры эхо сигнала. К параметрам эхо,
8.2. Методы встраивания информации на уровне коэффициентов
8.2. Методы встраивания информации на уровне коэффициентов В методе, предложенном в работе [7], осуществляется добавление псевдослучайного массива к DC-коэффициентам видео, сжатого по стандарту MPEG. В процессе встраивания ЦВЗ непосредственно участвуют только значения
8.3. Методы встраивания информации на уровне битовой плоскости
8.3. Методы встраивания информации на уровне битовой плоскости В первой главе был рассмотрен алгоритм, основанный на внедрении информации в наименее значащий бит неподвижных изображений. Этот метод отличается высокой пропускной способностью и небольшой вычислительной
7.2.2. СВАРКА ЗА СЧЕТ РЕЗИСТИВНОГО НАГРЕВА
7.2.2. СВАРКА ЗА СЧЕТ РЕЗИСТИВНОГО НАГРЕВА Сварка за счет резистивного нагрева (контактная) подразделяется на точечную, шовную и стыковую.Е. Томсон (США, 1886 г.), автор почти 700 изобретений, получил патент на электрическую сварку металлических стержней и проводов. Всего им и
5.1 Поток информации между процессами жизненного цикла системы и ПО
5.1 Поток информации между процессами жизненного цикла системы и ПО 5.1.1 Информационный поток от системных процессов к процессам ПО В процессе оценки безопасности системы должны быть определены возможные отказные ситуации для системы и установлены их категории,