6.2.2. Обзор алгоритмов встраивания ЦВЗ с использованием скалярного квантования

We use cookies. Read the Privacy and Cookie Policy

6.2.2. Обзор алгоритмов встраивания ЦВЗ с использованием скалярного квантования

А31 (C.-J. Chu [44]). В данном алгоритме к цветному изображению первоначально применяется пятиуровневое целочисленное вейвлет-преобразование. ЦВЗ представляет собой последовательность ±1. Модификации подвергаются только высокочастотные коэффициенты голубой компоненты, так как человеческий глаз наименее чувствителен к искажениям в этой области спектра. Перед встраиванием ЦВЗ двоичное представление коэффициентов сдвигается вправо, а после встраивания — влево. За счет этого достигается робастность к возможному последующему квантованию. Коэффициенты встраиваются в соответствии со следующей формулой:

, (6.35)

где определяет мощность ЦВЗ wi, а яркость соответствующего пиксела изображения — .

Извлечение ЦВЗ происходит в отсутствие исходного изображения, а искаженный коэффициент голубого канала оценивается на основе близлежащих коэффициентов. При этом находится разность между принятым коэффициентом и его оценкой, и бит ЦВЗ определяется исходя из ее знака:

(6.36)

А32 (Hsu [42]). В этом алгоритме в качестве ЦВЗ используется бинарное изображение размером вдвое меньше исходного. Оба изображения подвергаются кратномасштабному разложению: контейнер декомпозируется при помощи вейвлет-преобразования (фильтр Добеши-6, два уровня), а ЦВЗ преобразуется при помощи понижающей разрешение функции, описанной в стандарте JBIG (Joint Binary Image Group). Таким образом, к каждому изображению применяется соответствующее ему преобразование. ЦВЗ с уменьшенным разрешением будем называть остаточным. Остаточный ЦВЗ интерполируется (то есть между всеми пикселами вставляются нули) и вычитается из начального ЦВЗ. В результате получается разностный ЦВЗ, энергия которого значительно меньше остаточного.

И разностный и остаточный ЦВЗ встраиваются в вейвлет-образ исходного изображения. При этом внедрение осуществляется только в ВЧ-НЧ и НЧ-ВЧ области. Область НЧ-НЧ не используется, так как значения коэффициентов большие, а значит велик шум изображения, а область ВЧ-ВЧ не используется, так как в ней большую величину имеет шум обработки: коэффициенты в ней малы и будут удалены после сжатия. Для большей робастности внедрение ЦВЗ выполняется «через столбец» в каждую из областей: в одну внедряются четные столбцы, а в другую — нечетные. Перед встраиванием биты ЦВЗ перемешиваются по псевдослучайному закону. Процесс внедрения показан на рис. 6.5. Как видно из рисунка, остаточный ЦВЗ встраивается в более энергетически значимые области изображения, чем разностный. Тем самым достигается согласование между изображением-контейнером и ЦВЗ.

Рис. 6.5. Встраивание остаточного и разностного ЦВЗ

Надо отметить, что этот алгоритм вряд ли является стойким к операциям обработки сигнала: так как вейвлет-преобразование прекрасно концентрирует энергию изображения в НЧ-областях, ВЧ-коэффициенты будут малы. Поэтому они будут удалены алгоритмом сжатия вместе с вложенной информацией. Другим недостатком алгоритма является то, что для декодирования ЦВЗ требуется наличие в декодере исходного изображения.

Данный текст является ознакомительным фрагментом.