Глава VIII. Дорога в будущее

We use cookies. Read the Privacy and Cookie Policy

Глава VIII. Дорога в будущее

Из этой главы читатель узнает о том, как создается сегодня авиационная техника завтрашнего дня, как в лабораториях и на экспериментальных станциях испытываются самолеты и двигатели будущего, какие труднейшие задачи приходится при этом решать.

Летчик, испытывающий самолет, вручает свою жизнь людям, создавшим новую машину.

Но не одно это делает движение авиации вперед таким специфичным, особым, не похожим на развитие других отраслей науки и техники.

Вот произошла катастрофа экспериментального самолета. Погиб летчик, погиб самолет. Что случилось там, в небе? В чем порок, как его устранить?

Хорошо, если летчик спасся, выбросившись на парашюте. А если это беспилотный самолет, ракета или управляемый снаряд? Кто расскажет, в чем причина неудачи?

И даже это еще, пожалуй, не самое существенное. Разве может конструктор самолета или беспилотной ракеты передать их на испытания, не будучи твердо уверенным в успехе? Но на чем должна быть основана эта уверенность? На опыте прошлого? Но в авиации новое всегда так сильно отличается от старого. На предвидениях теории? Но в науке так много недомолвок, в особенности если это наука авиационная, стремительно развивающаяся.

Конечно, имеющийся опыт и теория — основа, на которой строит свою уверенность конструктор. Но одной этой основы явно недостаточно. Решающей должна быть проверка экспериментом. Все, что можно, проверить заранее — вот девиз авиации, залог успеха ее развития. Эта проверка, экспериментальная «доводка» не только сохранит жизни, она сэкономит уйму времени и средств, а часто и вообще предопределит судьбу всего дела. Именно в лабораториях научно-исследорательских институтов и опытно-конструкторских бюро, а потом на опытных аэродромах и полигонах прокладывается дорога в будущее авиации. Здесь куется та «сила разума», о которой говорил отец русской авиации Н. Е. Жуковский.

Но ошибется тот, кто представит себе эксперимент проходящим в тиши научной лаборатории, за столом неторопливого ученого, собирающего хрупкие конструкции из стекла и проводников. В авиации все обстоит совсем иначе, хотя есть и стеклянные трубки и электрические схемы.

Вот, например, конструкторское бюро, где создаются новые мощные реактивные двигатели — сердце современных самолетов. Сотни, тысячи людей заполняют заводские корпуса этого бюро. Мы входим в один из них. Здесь исследуются компрессоры турбореактивных двигателей. Из кабины инженера, ведущего испытание, виден компрессор, установленный на испытательном стенде. Только гул воздуха, протекающего через компрессор, слабо доносится через звукоизолированные стены бокса. Там, внутри бокса, шум этот оглушил бы нас. Но там людей нет, они здесь, у пульта управления с его бесчисленными ручками, кнопками, лампочками, циферблатами.

Неподвижен только корпус компрессора. Внутри него с огромной скоростью вращается ряд больших дисков с венцами тончайших, изящно изогнутых лопаток. Это — ротор. Исследователь изучает законы течения воздуха в компрессоре, десятки и сотни раз меняет профили лопаток, их закрутку, чтобы еще немного повысить коэффициент полезного действия компрессора. Ведь на его вращение расходуется мощность, уже сейчас превышающая 50 тысяч лошадиных сил! Один процент этой мощности равен 500 лошадиным силам, то есть мощности десяти автомобилей «Победа».

В двигателе компрессор вращается газовой турбиной. А здесь, на стенде? Здесь для этого удобнее использовать паровую турбину. Она занимает больше половины испытательного зала. В соседнем здании расположена котельная, откуда поступает пар, питающий турбину. Мощность турбины равна многим тысячам лошадиных сил — как на крупнейшей электростанции! И вся эта мощность вместо того, чтобы приводить в движение станки на заводах и электропоезда, освещать дома, театры, улицы, тратится на вращение компрессора. Вот почему такие уникальные испытательные установки исключительно дороги.

Но ведь мощность авиационных двигателей быстро растет. Это делает грозной проблему испытания компрессора. И наука настойчиво ищет пути решения этой проблемы. Можно испытывать компрессор на разреженном воздухе, тогда его мощность будет значительно меньше. Еще лучше заставить течь через компрессор не воздух, а особый газ, точнее — смесь газов, специально подобранных так, чтобы условия испытания имитировали истинные, но затрата мощности была бы значительно меньше.

Такая имитация — настоящая «изюминка» эксперимента с новой авиационной техникой. Действительно, ведь создать истинные условия полета со сверхзвуковой скоростью на огромной высоте можно только… в таком именно полете. Конечно, он и будет венчать дело, но начинать надо не с него. И вот тут-то изыскиваются условия, имитирующие истинные.

Зайдем в другое огромное здание конструкторского бюро. Это — святая святых. Уже позади тщательные, придирчивые, многочасовые испытания отдельных элементов двигателя, например того же компрессора. Счастье еще, что новые газотурбинные авиационные двигатели позволяют вести такие поэлементные испытания — отдельно компрессора, отдельно турбины, отдельно камеры сгорания и т. д. Со старыми поршневыми двигателями это было невозможно, там проверяется все сразу на двигателе или, в лучшем случае, на одноцилиндровой установке.

Теперь дело дошло наконец до всего двигателя целиком. Только эти испытания будут решающими. Но как испытать двигатель в условиях высотного скоростного полета? Испытательная установка, имитирующая эти условия, становится громоздкой, сложнейшей, колоссальной.

Так выглядит современная станция для испытаний реактивных двигателей (из журнала «Америкен авиэйшн», 1957 г.).

Воздух входит в двигатель не просто из атмосферы. Его давление либо предварительно повышается, либо понижается; он либо охлаждается, либо нагревается. Еще сложнее дело обстоит с газами, вытекающими из двигателя. Ведь на высоте они вытекают в среду с очень малым давлением. Значит, и здесь на выходе из двигателя должен существовать вакуум. Для этого приходится устанавливать серии массивных вакуум-насосов, требующих мощных двигателей. Мало того, до подачи в эти насосы газы должны быть охлаждены, так как иначе их объем будет слишком большим. Значит, нужно поставить батареи огромных охладителей. Целые реки воды втекают ежесекундно в эти испытательные станции, в них устремляются ураганные воздушные потоки, а из них рвутся наружу газы. Чтобы заглушить страшный шум работающего двигателя, коридоры-каналы для воздуха и газов перегораживают глушителями, стены здания сооружают из специального звукоизолирующего материала, покрывают слоями стеклянной ваты и других материалов, в которых должны завязнуть остатки звука…

А вот еще одна установка для испытаний двигателя. Мы рассказываем о ней не потому, что такие установки получили особенно широкое применение или ведущиеся на них испытания имеют какое-то особо важное значение. Просто это наглядный пример того, насколько сложной является проблема всестороннего испытания современных авиационных турбореактивных двигателей.

… Мы снова в кабине наблюдения испытательной станции. Через толстое многослойное стекло виден рвущийся с опор двигатель — его грохот здесь, в кабине, у пульта управления и приборных щитов, совсем не слышен. Испытание как испытание, что в нем особенного? И вдруг… Что это? Может быть, нам почудилось? Да и ведущий испытание инженер, кажется, совершенно спокоен. Значит, явно почудилось. А ведь отчетливо было видно, как в потоке воздуха, с огромной скоростью врывающегося в чрево двигателя, промелькнула… птица. Откуда ей взяться здесь, в испытательном боксе, если по пути в двигатель атмосферный воздух проходит через ряд фильтров и глушителей?! Никакая птица проникнуть через них, конечно, не может. Почудилось…

Схема устройства одного из боксов для испытания турбореактивных двигателей (из журнала «Флайт», 1957 г.).

Но снова — в двигатель стремглав влетела, нелепо растопырив крылья, еще одна птица. Потом еще, еще… Мы теперь видим, что ведущий испытание инженер командует появлением этих птиц. Быстрое нажатие красной кнопки на пульте — птица, еще нажатие — еще птица, два нажатия подряд — две птицы. А вот длительное нажатие — и целая стайка ворон или каких-то еще птиц, и разглядеть-то их как следует не удается, скрылась в утробе бешено работающего двигателя.

Что это, испытания турбореактивного двигателя на. птицах?! Чертовщина какая-то.

Но дело объясняется очень просто. Действительно, здесь проверяется, как сказывается на работе двигателя попадание в него птицы. И ясно, что такое испытание производится не случайно. Уж очень много бед доставляют ныне птицы авиации — сколько раз реактивные лайнеры разбивались из-за того, что с ними неуважительно обошлись птицы. Обычно это случается на взлете, но иногда и на высоте 1200–1800 метров, в сезоны перелета птиц. В одних только США за два года, 1961–1962, произошло более 60 случаев попадания птиц в турбореактивные и турбовинтовые двигатели самолетов, причем часто это заканчивалось катастрофой.

Конечно, иногда птицы вызывают катастрофы самолетов и по другой причине. Например, в 1962 году американский самолет с 17 пассажирами и членами экипажа разбился в 20 километрах от Балтиморы потому, что столкнулся со стаей лебедей и один из них разбил рулевое управление самолета 5*. Но чаще всего дело именно в двигателе. Вот только один из многих случаев. Большой американский турбовинтовой самолет «Электра» разбился при взлете в аэропорту Бостона 4 октября 1960 года, погибло 62 человека, и 11 человек было ранено. Причина — в двигатели самолета попали… скворцы 6*. Оказывается, компрессоры двигателей этого самолета при работе создают шум, очень похожий на стрекотание большого числа кузнечиков. Ошибка скворцов обошлась дорого.

5* Газета «Московская правда», 30 ноября 1962 г.

6* Журнал «Авиэйшн Уик», № 6, 1962 г.

Модель нового самолета установлена для испытания в сверхзвуковой аэродинамической трубе (по журналу «Эроплейн», 1956 г.).

А за несколько дней до этого только чудо спасло от подобной же катастрофы 58-местный самолет «ДС-8», у которого три турбореактивных двигателя из четырех вышли из строя в результате попадания в них в полете над Данией… чаек 7*.

Поэтому-то в США введено в качестве обязательного испытание двигателей самолета на последствия попадания птиц 8*. Двигатель должен безболезненно проглотить при таком испытании до 16 птиц, малых-весом 85-115 граммов, и больших — весом 0,9–1,4 килограмма. Неплохой аппетит!

Но вернемся к испытательным станциям. В других конструкторских бюро, например создающих совершенные образцы самолетного оборудования, применяют специальные сложнейшие установки — термобарокамеры, имитирующие высотный полет. Многочисленные установки кондиционирования воздуха создают в этих огромных стальных, обычно цилиндрических по форме, камерах нужный экспериментатору искусственный климат. Воздух в камерах то холодный, то горячий, то сжатый, то разреженный, то сухой, то влажный. И все это регулируется с величайшей точностью, чтобы испытываемый агрегат точно так же бросало «то в жар, то в холод», как это случается в истинном полете.

Но вот наконец все, что можно, отработано, проверено и установлено на самолете. Как испытать теперь сам самолет?

Делается это не сразу.

Сначала конструкторы и ученые долго возятся с моделями самолета, изготовленными из дерева, пластмасс, металла. Затем эти модели «продувают» в аэродинамической трубе.

Вряд ли есть какое-либо другое устройство, которому авиация была бы так обязана, как аэродинамической трубе. От почти игрушечной трубы Циолковского, через первые трубы Жуковского, к современным трубам — колоссальный путь, путь непрерывного совершенствования, настойчивых поисков, остроумнейших находок и открытий.

7* Об этом сообщил канадский журнал «Эркрафт», № 8, 1962 г.

8* По реферативному журналу «Авиационные и ракетные двигатели», № 3, 1963 г.

Так выглядит человек в большой аэродинамической трубе (из журнала «Эронотикел инжиниринг ревью», 1957 г.).

Испытание в аэродинамической трубе дает ответ почти на все вопросы, волнующие конструктора. Оно говорит ему, какова будет скорость нового самолета, будет ли он устойчивым в полете, маневренным, не будут ли возникать в нем опасные колебания, носящие хитрые иностранные названия — флаттер, бафтинг и другие. Для этого модель самолета помещают на точнейших и сложнейших аэродинамических весах. Они не просто измеряют усилия, действующие на самолет в трубе, но делают это очень точно и регистрируют отдельно силы, действующие вверх, в стороны, вниз, отдельно — так называемые моменты, стремящиеся опрокинуть самолет вправо или влево, повернуть его вверх, вниз или-в стороны. И при этом весы не только измеряют все эти усилия, но и автоматически записывают их в течение всего хода испытания.

Но вот модель самолета установлена на весах, и труба начинает работать. По ней с огромной скоростью устремляется воздушный поток. Он тоже должен имитировать условия истинного полета, значит, воздух в трубе должен быть плотным или разреженным, теплым или холодным, его скорость должна точно соответствовать скорости полета. Выходит — опять мощные вентиляторы и воздуходувки, опять насосы и компрессоры, опять печки и холодильники, опять специальные газы, заменяющие воздух.

Если труба пригодна лишь для испытания небольших моделей самолета, она может уместиться в комнате, а то и на столе экспериментатора. Но модель ведь всего только модель. Конечно, наука о моделировании, позволяющая заменять исследование настоящего объекта исследованием его модели, сделала в авиации чудеса. Но все же модельное испытание далеко не всегда способно заменить полномасштабное, натурное.

И вот в трубу вводится уже целиком весь самолет. Теперь труба — это уже не труба, а огромный, длиннейший коридор. Человек в нем кажется букашкой. И весы — это уже не те миниатюрные весы аптечного вида, которые применяются в малых трубах, а грандиозное сооружение. Но самое большое изменение претерпевает воздуходувка. Теперь это уже не вентилятор вроде того, что спасает нас летом от жары. Гигантские многолопастные винты создают ураган в трубе. И понятно, что для привода их во вращение нужны уже не миниатюрные электромоторчики, а двигатели колоссальной мощности.

Эта мощность тем больше, чем больше размеры трубы и чем больше имитируемая скорость полета. Когда эта скорость приближается к звуковой, а затем и превышает ее, мощность двигателей трубы становится колоссальной. Гигантские электростанции питают силовую установку трубы. Иной раз даже прекращается подача тока всем остальным потребителям.

Но порой и это не помогает, когда скорость намного превышает звуковую. Тогда приходится переходить на трубы, в которых течет сильно разреженный воздух, или снова уходить от натуры к модели, однако и это ненамного облегчает задачу. И настойчивая мысль экспериментатора бьется, пытаясь найти пути преодоления необычайных трудностей.

Если нельзя создать в трубе непрерывный поток огромной, сверхзвуковой скорости, то, может быть, удастся создать такой поток хоть на короткое время?

И исследователи обращаются к разнообразным трубам кратковременного действия. В гигантский стальной шар мощные насосы накачивают воздух. Так продолжается час, два. Наконец давление в шаре достигает заданного значения. Теперь насосы останавливаются и открывается заслонка, через которую воздух из шара устремляется в аэродинамическую трубу, создавая поток огромной скорости, и вот уже шар снова пуст. Надо опять его заряжать… Чтобы сэкономить время, устанавливается не один, а два-три шара: пока один срабатывает, другой накачивается — готовится к испытанию. Такие установки, конечно, значительно дешевле, чем трубы непрерывного действия.

Создать поток большой скорости — это главное, но этим не ограничиваются задачи исследователей. Ведь нужно имитировать и «тепловой барьер». Как нагреть воздух до температуры в сотни градусов?

Значит, и здесь без «печек» не обойтись. По пути в шар воздух проходит через электрические подогреватели или подогревается в батареях, снаружи которых текут раскаленные газы — продукты горения топлива в специальных топках. Но вот воздух вошел в шар. Пока шар накачивается, воздух остывает, теряя драгоценное тепло, полученное столь дорогой ценой. Как уменьшить потери тепла? Для этого в одной из труб гигантские шары — резервуары сжатого воздуха — заполнены миллионами… пустых консервных банок. Банки служат своеобразными аккумуляторами тепла, запасая его в своих тонких стенках 9*.

Но впереди еще большие скорости полета, в 5-10-20 раз превышающие скорость звука. Мало того, эти условия полета существуют ведь уже и сейчас. С такой скоростью, например, врывается в плотные слои атмосферы высотная дальняя баллистическая ракета, завершающая свой тысячекилометровый полет. Что испытывает ракета в этих условиях? Как имитировать их в лаборатории?

И наука ищет решения все усложняющихся задач. В обычных трубах не удается создать поток нужной скорости. Но что произойдет, если испытываемая модель будет мчаться навстречу потоку? Тогда относительная скорость потока и модели станет равной сумме обеих скоростей. Так появляются «трубы свободного полета». Ничтожные мгновения длится полет модели в такой трубе, но на худой конец и их достаточно. Чувствительные приборы расскажут ученому-экспериментатору, какова была в полете температура в разных точках модели. Остроумнейшие устройства сфотографируют невидимый поток воздуха, обтекающий летящую модель, и раскроют тайны этого обтекания, без знания которых нельзя правильно рассчитать самолет или ракету и их полет. Часто оказывается более целесообразным «выстрелить» моделью не в воздушный поток, а в струю какого-нибудь газа или смеси газов 10*. И это, конечно, делается — ученого не остановят никакие препятствия.

Понятно, что трубы свободного полета далеко не так удобны для экспериментатора, как обычные аэродинамические трубы. Нельзя ли все же именно их использовать для исследования полета с большой сверхзвуковой, или, как ее иногда называют, гиперзвуковой скоростью?

Можно. Для этого служат так называемые ударные трубы, рожденные быстро развивающейся техникой авиационного эксперимента. Очень просты эти трубы по идее, но, как это часто бывает, чрезвычайно сложны в использовании. Представьте себе длинную, в десятки метров, трубу сравнительно небольшого сечения. Слева у этой трубы- пушки своеобразная «казенная часть» — камера с сильно сжатым газом. Эта камера отделена от остальной трубы — ствола, другой конец которого открыт в атмосферу, металлической перегородкой — диафрагмой. В стволе установлена испытываемая модель; ее можно увидеть сквозь кварцевые окошки в стенке трубы. Когда нужно произвести испытание, диафрагма моментально рвется, часто с помощью электрического тока. Сжатый газ из камеры устремляется в трубу, предшествуемый мощной волной повышенного давления. Эта невидимая волна (впрочем, в трубе ее удается видеть и даже сфотографировать с помощью специально разработанных устройств) мчится с огромной скоростью, набегает на модель, имитируя условия гиперзвукового полета. И опять лишь мгновения длится опыт — мгновения, которые должны дать ответ на многие вопросы, волнующие ученого и конструктора.

Но и здесь трудно, очень трудно имитировать «тепловой барьер». А именно проблема «теплового барьера» как раз и требует особенно тщательных экспериментов. Как имитировать условия, при которых самолет или ракета мчатся как бы в струе раскаленных газов? Нельзя ли найти устройства, способные создать такую струю?

И экспериментатор обращается к жидкостному ракетному двигателю. Теперь струя газов, хлещущих из него, используется как раскаленный поток. Модель вносится в этот поток, рвущийся из двигателя. Пусть она сразу же начинает раскаляться добела — так и нужно, ведь именно эти условия встретят самолет или ракета в полете.

Больше того, истинные условия могут оказаться и гораздо труднее. Поэтому нет ли источника газов более высокой температуры, чем считавшийся недавно рекордистом в этом отношении ракетный двигатель?

На помощь химии приходит электричество. Используя мощную электрическую дугу, удается создать поток раскаленной плазмы с температурой более 10 000°, вдвое превосходящей температуру поверхности Солнца. Вот это уже, пожалуй, то, что устроит даже авиацию завтрашнего дня!

Мы еще, конечно, далеко не исчерпали весь арсенал экспериментальных средств, состоящих ныне на службе аэродинамических исследований в авиации. Тут и сверхскоростные ракеты, используемые в качестве «летающих лабораторий», — на них, обычно спереди, устанавливаются испытываемые модели или элементы будущих конструкций; тысячи раз в минуту передаются на землю с такой «летающей лаборатории» показания многих десятков приборов. И ракетные тележки, со сверхзвуковой скоростью мчащиеся по рельсовому пути длиной в несколько километров. На тележке устанавливаются испытываемые части конструкции или агрегаты. Очень удобными оказались, в частности, тележки для исследования катапультируемых сидений, позволяющих летчикам выбраться из гибнущего самолета. Сотни и тысячи раз выстрелят из такой тележки манекеном, прежде чем будет совершен первый прыжок летчика с самолета.

Используются и небольшие модели будущих самолетов, снабженные тем не менее достаточно мощными ракетными двигателями, чтобы разгонять их до весьма больших скоростей. Радиотелеметрирование и здесь помогает получить все необходимые сведения о полете модели, да и на ней самой могут быть установлены записывающие приборы.

9* Об этом сообщил журнал «Каррент Сайенс энд Авиэйшн», 1957 г.

10* «Рипорт НАКА», 1956 г.

С помощью такой ракетной тележки испытываются иногда летчики на инерционные перегрузки (из журнала «Америкен авиэйшн», 1955 г.).

Аэродинамика — главный, но далеко не единственный объект исследования при создании нового самолета. Кому нужен самый скоростной самолет, если он рассыпается в воздухе? И сложнейшие установки исследуют прочность всего самолета и его элементов, имитируя истинные условия полета. Нетрудно испытать на прочность, например, крыло самолета в обычных условиях, но как испытать его, если оно нагрето до нескольких сот градусов, как это будет в скоростном полете? И в сложных установках крыло нагревается в ходе испытаний с помощью инфракрасного излучения или другим способом до нужной температуры. Можно испытать на прочность фюзеляж, но если это — махина в десятки тонн весом, то задача становится непростой. И вот иногда весь такой фюзеляж погружается в бассейн с водой, имитирующей нагрузку на стенки фюзеляжа в полете. Не так сложно нагрузить стенки герметической кабины постоянным давлением, но в полете эта нагрузка сотни раз меняется вместе с режимом полета. Если не проверить, как ведут себя стенки кабины в условиях переменной нагрузки, то новый самолет может постигнуть печальная участь английского пассажирского реактивного самолета «Комета», рассыпавшегося в воздухе. И создаются специальные испытательные установки, имитирующие переменные нагрузки, меняющиеся в определенной последовательности.

Новые самолеты, летящие с огромной скоростью, подвергаются неизмеримо большим нагрузкам. Если исходить из старых норм и тре-. бований, то современные самолеты должны стать такими тяжелыми, что их скоростной полет окажется практически невозможным. Ученые непрерывно исследуют тайны прочности материалов, из которых изготовлены детали самолета.

Неоценимую помощь оказывают при этом методы фотоупругости. Деталь из специальной прозрачной пластмассы, находящаяся под нагрузкой, изрисовывается на экране прибора причудливыми кривыми и дугами. По этим разноцветным изображениям ученый и конструктор отчетливо представляют себе, в каком месте материалу особенно трудно, и облегчают ему «жизнь», меняя конструкцию детали.

Фюзеляж самолета погружается в воду для испытания на прочность.

Но мало создать самолет или ракету, рассчитанные на полет с заданной скоростью и обладающие необходимой прочностью. На что способны они? Какой полет им под силу?. Как определить наивыгоднейший полет?

Конечно, все это можно установить экспериментально, посылая самолет или ракету в полет раз, другой, десятый. Но нужно ли говорить, как это невыгодно!

И на помощь приходят новые средства имитации истинного полета. На этот раз нет нужды в самих самолетах и ракетах или даже в их моделях. Достаточно сообщить имитирующему устройству все необходимые данные. И тогда такие «бумажные» самолеты и ракеты совершат в имитирующем устройстве любой, самый причудливый полет, какой только придет на ум экспериментатору. И сразу станет ясно, на что способен самолет или ракетный снаряд. Таким имитирующим чудо-устройством является электронная моделирующая машина. Правда, она получается весьма громоздкой и иной раз одна занимает довольно большое здание. Но разве оценишь ее истинную роль!

И все же — как бы там ни было! — наступает момент, когда в самолет должен сесть летчик.

Все ли сделано, чтобы облегчить сложнейшую и ответственнейшую задачу испытателя?

Нет, еще не все.

С помощью панорамного кино летчик совершает «посадку» на аэродром, не выходя из помещения (из журнала «Америкен авиэйшн», 1956 г.).

На помощь приходят те же электронные моделирующие машины. Они «совершат» за летчика, предварительно, любой полет, проверят прочность самолета и его поведение в любых условиях, установят все недочеты новой конструкции. А сам самолет будет в это время еще только готовиться к первому полету.

Так самолет совершает свой первый полет, не отрываясь от земли. То же самое делает и летчик. Для него создаются многочисленные устройства, позволяющие совершить полет, точно имитирующий настоящий, но происходящий на земле. Специальный тренажер чрезвычайно полно и точно воссоздает условия истинного полета, вплоть до широкой панорамы аэродрома, как бы видимой летчиком через стекла «фонаря» кабины, а на самом деле проецируемой на экране панорамного кино. Только после таких тренировок подготовленный летчик садится на всесторонне «прощупанный» и исследованный самолет.

И тогда… тогда начинается истинный полет, как всегда отличный от всех модельных и имитированных, — так же как живое отличается от любой схемы. И там, в небе, летчик завершит труд большого коллектива людей, создающих новую авиацию, прокладывающих путь в ее будущее.