9. Закон распределения Пуассона и Гаусса
9. Закон распределения Пуассона и Гаусса
Закон Пуассона. Другое название его – закон ра-определения редких событий. Закон Пуассона (З. П.) применяется в тех случаях, когда маловероятно, и поэтому применение Б/З/Р нецелесообразно.
Достоинствами закона являются: удобство при вычислении, возможность вычислить вероятность в заданном промежутке времени, возможность замены времени другой непрерывной величиной, например, линейными размерами.
Закон Пуассона имеет следующий вид:
и читается следующим образом: вероятность появления события А в m раз при n независимых испытаниях выражается формулой вида (59), где а = пр – среднее значение p(A), причем а является единственным параметром в законе Пуассона.
Закон нормального распределения (закон Гаусса). Практика неуклонно подтверждает, что закону Гаусса с достаточным приближением подчиняются законы распределения ошибок при измерениях самых различных параметров: от линейных и угловых размеров до характеристик основных механических свойств стали.
Плотность вероятности закона нормального распределения (в дальнейшем Н. Р.) имеет вид
где x0 – среднее значение случайной величины;
? – среднее квадратическое отклонение той же случайной величины;
e = 2,1783… – основание натурального логарифма;
Ж – параметр, который удовлетворяет условию.
Причина широкого применения закона нормального распределения теоретически определяется теоремой Ляпунова.
При известных Х0 и ? ординаты кривой функции f(x) можно вычислить по формуле
где t – нормированная переменная,
(t) плотность вероятности z. Если подставить z и (t) в формулу, то следует:
Кривую З.Н.Р. часто называют кривой Гаусса, этот закон описывает очень многие явления в природе.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
ЦАРЕВНА-ЛЯГУШКА И ЗАКОН УСТОЙЧИВОСТИ
ЦАРЕВНА-ЛЯГУШКА И ЗАКОН УСТОЙЧИВОСТИ Как уже подчеркивалось ранее (закон абстракции), первобытное мышление умело анализировать конкретные явления и синтезировать новые абстрактные системы. Так как любой сконструированный сознанием объект воспринимался живым, а живое
6. Закон перехода в надсистему
6. Закон перехода в надсистему Исчерпав возможности развития, система включается в надсистему в качестве одной из частей; при этом дальнейшее развитие идет на уровне надсистемы. Об этом законе мы уже говорили. Перейдем к «динамике». Она включает законы, отражающие
4.4.1. Закон Фитса
4.4.1. Закон Фитса Представим, что вы перемещаете курсор к кнопке, изображенной на экране. Кнопка является целью данного перемещения. Длина прямой линии, соединяющей начальную позицию курсора и ближайшую точку целевого объекта, определяется в законе Фитса как дистанция. На
4.4.2. Закон Хика
4.4.2. Закон Хика Перед тем как переместить курсор к цели или совершить любое другое действие из набора множества вариантов, пользователь должен выбрать этот объект или действие. В законе Хика утверждается, что когда необходимо сделать выбор из n вариантов, время на выбор
1.1. Основной закон эволюции
1.1. Основной закон эволюции В процессе эволюции жизни, насколько нам известно, всегда происходило и происходит сейчас увеличение общей массы живого вещества и усложнение его организации. Усложняя организацию биологических образований, природа действует по методу проб и
4.2. Закон Мура
4.2. Закон Мура В своей самой простой формулировке закон Мура сводится к утверждению, что плотность монтажа транзисторных схем возрастает вдвое за каждые 18 месяцев. Авторство закона приписывают одному из основателей известной фирмы Intel Гордону Муру. Строго говоря, в
22. Закон Бойля-Мариотта
22. Закон Бойля-Мариотта Одним из законов идеального газа является закон Бойля-Мариотта, который гласит: произведение давления Pна объем Vгаза при неизменных массе газа и температуре постоянно. Это равенство носит название уравнения изотермы. Изотерма изображается на
23. Закон Гей-Люссака
23. Закон Гей-Люссака Закон Гей-Люссака гласит: отношение объема газа к его температуре при неизменных давлении газа и его массе постоянно.V/ Т = m/ MО R/ P= constпри P = const, m = const.Это равенство носит название уравнения изобары.Изобара изображается на PV-диаграмме прямой,
24. Закон Шарля
24. Закон Шарля Закон Шарля утверждает, что отношение давления газа к его температуре постоянно, если объем и масса газа неизменны:P/ Т = m/ MО R/ V = constпри V = const, m = const.Это равенство носит название уравнения изохоры.Изохора изображается на PV-диаграмме прямой, параллельной оси P, а
30. Закон сохранения и превращения энергии
30. Закон сохранения и превращения энергии Первый закон термодинамики основан на всеобщем законе сохранения и превращения энергии, который устанавливает, что энергия не создается и не исчезает.Тела, участвующие в термодинамическом процессе, взаимодействуют друг с
6. Статистика распределения случайных величин
6. Статистика распределения случайных величин Основные характеристики случайных величин.1. Меры положения.Таковыми называют (считают) точки, вокруг которых происходит колебание характеристики величин.Сумма произведений эмпирических значений случайной величены xi на
10. Биноминальный и полиноминальный законы распределения. Равновероятное распределение. Закон распределения эксцентриситета
10. Биноминальный и полиноминальный законы распределения. Равновероятное распределение. Закон распределения эксцентриситета 1. Биноминальный закон распределения. Этот закон математически выражается формулой разложения бинома (q + p)2 в следующем виде где n! – читается
11. Другие законы распределения
11. Другие законы распределения В технической промышленности, в том числе приборостроении, применяются некоторые другие виды законов распределения, кроме вышерассмотренных. При этом распределение случайных величин идет уже по самым разнообразным их параметрам.