4.4.2. Закон Хика

4.4.2. Закон Хика

Перед тем как переместить курсор к цели или совершить любое другое действие из набора множества вариантов, пользователь должен выбрать этот объект или действие. В законе Хика утверждается, что когда необходимо сделать выбор из n вариантов, время на выбор одного из них будет пропорционально логарифму по основанию 2 от числа вариантов плюс 1, при условии, что все варианты являются равновероятными. В этом виде закон Хика очень похож на закон Фитса:

Время (мс) = a + b log_2(n+1)

Если вероятность 1-го варианта равна p(i), то вместо логарифмического коэффициента используется

sum_i p(i) log_2(1/p(i)+1)

Коэффициенты, используемые в выражении закона Хика, в большой степени зависят от многих условий, включая то, как представлены возможные варианты, и то, насколько хорошо пользователь знаком с системой. (Если варианты представлены непонятным образом, значения a и b возрастают. Наличие навыков и привычек в использовании системы снижает значение b.) Мы не будем рассматривать эти зависимости – для нас важно, что для принятия того или иного решения требуется время; что для принятия сложных решений требуется больше времени, чем для принятия простых решений; и что взаимосвязь является логарифмической. При отсутствии более точных данных для проведения быстрых и приблизительных вычислений мы можем воспользоваться теми же значениями a и b, которые использовали для закона Фитса.

При использовании любых положительных и ненулевых значений a и b из закона Хика следует, что предоставление пользователю сразу нескольких вариантов одновременно обычно является более эффективным, чем организация тех же вариантов в иерархические группы. Выбор из одного меню, состоящего из 8 элементов, производится быстрее, чем из двух меню, состоящих их 4 элементов каждое. Если все элементы могут быть выбраны с равной вероятностью и если не учитывать время, необходимое для открытия второго меню (которое, конечно, еще более увеличило бы время для интерфейса, состоящего из двух меню), то сравнение времени для выбора одного элемента из восьми (a + b log_2 8) с удвоенным временем для выбора одного элемента из четырех 2 (a + b log_2 4) покажет, что

а + 3b < 2(а + 2b)

поскольку log_2 8 = 3, a log_2 4 = 2, а также поскольку a < 2a и 3b < 4b.

Это согласуется с данными, полученными в экспериментах со структурами меню (см. например, Norman и Chin, 1988).

Наше рассмотрение законов Фитса и Хика нельзя считать полным. Например, следует обратить внимание на то, что эти законы не случайно принимают ту же форму, что и теорема Шэннона – Хартли (Shannon-Hartley). Тем не менее, этого короткого рассмотрения вполне достаточно для того, чтобы отметить их ценность с точки зрения разработки интерфейсов. Они могут быть полезными даже в том случае, когда эмпирические значения коэффициентов a и b не известны (как это было в нашем примере). (Более подробные сведения см. в Card, Moran и Newell, 1983, с. 72–74.)

Данный текст является ознакомительным фрагментом.



Поделитесь на страничке

Следующая глава >

Похожие главы из других книг

1. Закон полноты частей системы

Из книги Творчество как точная наука [Теория решения изобретательских задач] автора Альтшуллер Генрих Саулович

1. Закон полноты частей системы Необходимым условием принципиальной жизнеспособности технической системы является нал и чие и минимальная работоспособность основных частей с и стемы. Каждая техническая система должна включать четыре основные части: двигатель,


2. Закон «энергетической проводимости» системы

Из книги Интерфейс: новые направления в проектировании компьютерных систем автора Раскин Джефф

2. Закон «энергетической проводимости» системы Необходимым условием принципиальной жизнеспособности технической системы является скво з ной проход энергии по всем частям системы. Любая техническая система является преобразователем энергии. Отсюда очевидная


6. Закон перехода в надсистему

Из книги Приборостроение автора Бабаев М А

6. Закон перехода в надсистему Исчерпав возможности развития, система включается в надсистему в качестве одной из частей; при этом дальнейшее развитие идет на уровне надсистемы. Об этом законе мы уже говорили. Перейдем к «динамике». Она включает законы, отражающие


7. Закон перехода с макроуровня на микроуровень

Из книги Теплотехника автора Бурханова Наталья

7. Закон перехода с макроуровня на микроуровень Развитие рабочих органов системы, идет сначала на макро -, а затем на микр о у ровне. В большинстве современных технических систем рабочими органами являются «железки», например винты самолета, колеса автомобиля, резцы


8. Закон увеличения степени вепольности

Из книги Компьютерная лингвистика для всех: Мифы. Алгоритмы. Язык автора Анисимов Анатолий Васильевич

8. Закон увеличения степени вепольности Развитие технических систем идет в направлении увеличения степени вепол ь ности. Смысл этого закона заключается в том, что невепольные системы стремятся стать вепольными, а в вепольных системах развитие идет в направлении


4.4.1. Закон Фитса

Из книги Феномен науки [Кибернетический подход к эволюции] автора Турчин Валентин Фёдорович

4.4.1. Закон Фитса Представим, что вы перемещаете курсор к кнопке, изображенной на экране. Кнопка является целью данного перемещения. Длина прямой линии, соединяющей начальную позицию курсора и ближайшую точку целевого объекта, определяется в законе Фитса как дистанция. На


4.4.2. Закон Хика

Из книги Нанотехнологии [Наука, инновации и возможности] автора Фостер Линн

4.4.2. Закон Хика Перед тем как переместить курсор к цели или совершить любое другое действие из набора множества вариантов, пользователь должен выбрать этот объект или действие. В законе Хика утверждается, что когда необходимо сделать выбор из n вариантов, время на выбор


9. Закон распределения Пуассона и Гаусса

Из книги История выдающихся открытий и изобретений (электротехника, электроэнергетика, радиоэлектроника) автора Шнейберг Ян Абрамович

9. Закон распределения Пуассона и Гаусса Закон Пуассона. Другое название его – закон ра-определения редких событий. Закон Пуассона (З. П.) применяется в тех случаях, когда маловероятно, и поэтому применение Б/З/Р нецелесообразно.Достоинствами закона являются: удобство при


22. Закон Бойля-Мариотта

Из книги автора

22. Закон Бойля-Мариотта Одним из законов идеального газа является закон Бойля-Мариотта, который гласит: произведение давления Pна объем Vгаза при неизменных массе газа и температуре постоянно. Это равенство носит название уравнения изотермы. Изотерма изображается на


23. Закон Гей-Люссака

Из книги автора

23. Закон Гей-Люссака Закон Гей-Люссака гласит: отношение объема газа к его температуре при неизменных давлении газа и его массе постоянно.V/ Т = m/ MО R/ P= constпри P = const, m = const.Это равенство носит название уравнения изобары.Изобара изображается на PV-диаграмме прямой,


24. Закон Шарля

Из книги автора

24. Закон Шарля Закон Шарля утверждает, что отношение давления газа к его температуре постоянно, если объем и масса газа неизменны:P/ Т = m/ MО R/ V = constпри V = const, m = const.Это равенство носит название уравнения изохоры.Изохора изображается на PV-диаграмме прямой, параллельной оси P, а


30. Закон сохранения и превращения энергии

Из книги автора

30. Закон сохранения и превращения энергии Первый закон термодинамики основан на всеобщем законе сохранения и превращения энергии, который устанавливает, что энергия не создается и не исчезает.Тела, участвующие в термодинамическом процессе, взаимодействуют друг с


ЦАРЕВНА-ЛЯГУШКА И ЗАКОН УСТОЙЧИВОСТИ

Из книги автора

ЦАРЕВНА-ЛЯГУШКА И ЗАКОН УСТОЙЧИВОСТИ Как уже подчеркивалось ранее (закон абстракции), первобытное мышление умело анализировать конкретные явления и синтезировать новые абстрактные системы. Так как любой сконструированный сознанием объект воспринимался живым, а живое


1.1. Основной закон эволюции

Из книги автора

1.1. Основной закон эволюции В процессе эволюции жизни, насколько нам известно, всегда происходило и происходит сейчас увеличение общей массы живого вещества и усложнение его организации. Усложняя организацию биологических образований, природа действует по методу проб и


4.2. Закон Мура

Из книги автора

4.2. Закон Мура В своей самой простой формулировке закон Мура сводится к утверждению, что плотность монтажа транзисторных схем возрастает вдвое за каждые 18 месяцев. Авторство закона приписывают одному из основателей известной фирмы Intel Гордону Муру. Строго говоря, в