Измерение температуры

We use cookies. Read the Privacy and Cookie Policy

Измерение температуры

Автор этой книги треть жизни занимался измерением температуры — правда, температуры катодов электронно-вакуумных приборов. И сегодня его сердце начинает биться учащенно в четырех ситуациях: когда он входит в спортзал (запах пота и спортивных снарядов), когда выходит к доске перед новой группой школьников или студентов и когда слышит волшебные слова «температура катода».

«Три вещи невозможно понять, а некоторые говорят, что четыре — путь корабля в море, путь змеи на скале, путь птицы в небе и путь женщины к сердцу мужчины». Да, но зато можно понять путь энергии от РАО ЕЭС к катоду магнетрона в вашей микроволновке, а также путь электрона от катода к аноду в этом магнетроне.

О, температура катода, тебя пою! Температура того элемента электронного прибора, который создает поток электронов, на котором работает прибор. Это поток зависит от температуры, и в некоторых случаях — содрогнись, пипл — экспоненциально. Температура самого горячего — почти всегда — элемента прибора, а значит — посредством его испарения (опять же зависящего экспоненциально от температуры) изменяющего свой и окружающих элементов состав, а значит — определяющего срок службы катода и часто ограничивающего срок службы прибора. Более того, температура, влияющая — тут со зловещим скрипом отворяются врата физико-химической преисподней — на взаимодействие материала катода с остаточными газами в приборе, а значит, на его состав, а значит на эмиссию из него электронов. Температура, которую нужно знать с точностью в несколько градусов. Да не среднюю, а по всему катоду, да в процессе срока службы, да в процессе работы — при отборе тока, ионной и электронной (это ж магнетрон, не что-нибудь) бомбардировке…

Ну а в мирной жизни какие измеряем мы температуры? Человека, еды в духовке и воздуха за окном. Рассмотрим эти три задачи чуть подробнее.

Самое простое — в духовке. Точность требуется относительно низкая, скорость измерения — тоже. Известны два варианта — измерять температуру воздуха и температуру продукта. Второе точнее, но первое проще, ибо в продукт термометр надо втыкать (фото 1) и заботиться, чтобы он был виден с улицы, а термометр, закрепленный на корпусе (фото 2) и измеряющий температуру воздуха в духовке, требует меньше хлопот. Наверное, возможен комбинированный вариант — датчик втыкается в продукт, индикатор закреплен на корпусе. Датчик — это биметаллическая полоска, которая при нагреве за счет разности коэффициентов термического расширения поворачивает стрелку.

Измерение температуры человека — существенно более интересная с точки зрения метрологии задача, причем ситуации разнообразны. Во-первых, если это не грубая оценка, то желательна погрешность не более 0,1–0,2?С. Во-вторых, часто бывает нужно измерить быстро: при контроле большого количества пациентов, в экстренной ситуации, при измерении у маленького ребенка или плохо контролируемого пациента. В-третьих, бывает удобно иметь метод оценки пусть с меньшей точностью, но оперативный и совсем простой.

Поэтому термометры для измерения температуры человека разнообразны. Самые простые — контактные на жидких кристаллах. Это либо лента, прикладываемая ко лбу — для совсем грубой оценки (нормальная, повышенная, сильно повышенная), либо наклейка детенышу подмышку с «точками» изменяющими цвет при различных температурах (фото 3). Погрешность оценки посредством прикладываемой ко лбу ленты определяется нестабильным тепловым контактом с кожей и тем, что кожа вообще холоднее внутренней среды. Точность измерения посредством наклейки подмышкой может быть достаточна, если рука прижата к туловищу в течение нескольких минут — кожа догревается до внутренней температуры, а поскольку тело оказывается с двух сторон, то и влияние качества теплового контакта ослабевает. Известны колечки, с жидкими кристаллами, изменяющие цвет в зависимости от температуры (фото 4), применяются они для «определения настроения». Это не совсем бред — если человек испуган, встревожен, напряжен — то у него сжимаются периферические сосуды (организм готовится к бою и стремится уменьшить предполагаемую кровопотерю при ранениях) и периферия делается холоднее. А однажды я видел в киоске, но не сумел купить (киоск был закрыт), о чем по сей день и ночь жалею, устройство для определения совместимости двух лиц разного пола. Это была пластиночка с двумя сантиметровыми площадками, к которым оные лица должны были приложить по пальцу. Посередине между ними была площадка, изменявшая цвет. По сути дела (решите в уме уравнение теплопроводности в одномерном случае) это был приборчик для измерения средней температуры. И он показывал, что все хорошо, если оба персонажа были спокойны, доброжелательны и расслаблены, показывал не очень, если один был не очень, и показывал плохо, если не очень были оба — то есть боялись друг друга и сжимая периферические кровеносные сосуды, готовились к смертельной схватке. Как перед дверью туалета в хорошей коммуналке или перед прилавком, когда туша за прилавком объявила, что колбаса кончается и всем не хватит…

Традиционные контактные медицинские термометры с ртутью общеизвестны. Прослужив человечеству верой и правдой два с половиной века, они сейчас уступают место электронным — безопасным и ударопрочным. Следует напомнить, что при измерении в подмышке электронный термометр надо держать примерно то же время, что и ртутный, дабы поверхностный слой тела прогрелся. Но электронный сам измеряет скорость нарастания своих показаний и подает сигнал, когда можно его вынимать. При пероральном или перанальном измерении время установления показаний существенно меньше, ибо прибор сразу попадает в теплое место. Ртутные термометры в процессе своего развития нашли изящные и замысловатые решения. Например, известны термометры с впаянными в стекло и проникающими в капилляр электродами. При подъеме ртути до более высокотемпературного ввода контакты замыкаются и это используется как сигнал. Но что делать, если надо сделать точку срабатывания перестраиваемой? В одном из вариантов (фото 5) в термометре имеется дополнительный баллон со ртутью, которая может добавляться в капилляр и из которого она может в этот баллончик удаляться. При этом температура замыкания соответственно уменьшается и увеличивается. В другом варианте в капилляр опускается перемещаемая проволочка, которая и является вторым контактом (фото 6). Проволочка закреплена на гайке, которая перемещается вдоль винта. Винт же вращается посредством магнитной передачи: на винте закреплен магнит и снаружи градусника тоже имеется магнит.

Бесконтактно могут измерять температуру инфракрасные пирометры (фото 7, 8, 9), среди которых можно выделить «квазиконтактные», датчик которых нужно прижимать к коже (фото 7). Инфракрасные пирометры предназначены либо для измерения температуры во рту (фото 8), либо в ушном канале (фото 9). Во втором случае пирометр определяет, принимает он сигнал именно из канала или со стенки, водимо по величине сигнала и подает сигнал на фиксацию данных. Пирометр, датчик которого надо прижимать к коже, принимает сигнал с глубина несколько миллиметров. Поэтому он должен использоваться в области, где близко к поверхности подходят сосуды (висок, сгиб локтя), и имеет большее время срабатывания.

ИК-термометрия с высоким пространственным разрешением (ИК-тепловидение) получила важное применение в медицине: при разрешении в тысячные доли кельвина оказалось возможным быстро и не травмируя пациента диагностировать более ста болезней (http://ufn.ru/ru/articles/2006/12/d/).

Можно представить себе ситуацию, когда нужно измерить тепловое поле в пространстве, например распределение температур в горячем плотном газе, скажем, в атмосфере звезды. В этом случае восстановление трехмерного распределения температур по двумерным данным возможно при наличии некоторой модели объекта, то есть при каких-то ограничениях.

Заметим, что во всех перечисленных выше случаях прибор слабо влияет на объект ввиду относительно большой массы человека.

Разумеется, новые типы приборов вытесняют старые — и в метрологии, и вообще во всей технике. Естественно, эта смена поколений идет неравномерно, причем новая техника заменяет старую в основном там, где увеличение эффективности достаточно велико, чтобы преодолеть разумную и не разумную техническую инерцию. В ситуациях, где выигрыш мал или применение новой техники не возможно, сохраняется применение старой. Например, можно ожидать сохранения традиционных способов термометрии при высоких температурах или при высокой радиации, когда применение полупроводниковой техники затруднительно или невозможно.

Еще один распространенный случай измерения температуры — это измерение температуры воздуха за окном. Цель такого измерения понятна всем, кроме индийских йогов, поэтому рассмотрим проблемы. Точность сама по себе проблемой на является, но вот условия измерения представляются сложными: на датчик, выставленный за окно, действует и дождь, и ветер, и солнечное излучение, и таинственный свет Луны. Дождь сильно влиять на показания не должен — капли летят сквозь атмосферу и теплообмен за время порядка секунд должен установить тепловое равновесие. Дождь с ветром температуру будут занижать — если влажность не 100 %-ная, обдув увеличивает испарение, которое идет с отводом тепла. Ветер сам по себе на показания влиять не должен; фраза «ветер сегодня холодный» и аналогичные — бред, но этот бред устроен, как Офелия — «В ее безумии есть система». А именно, если человек теплее воздуха, то увеличение скорости движения воздуха действительно увеличивает теплоотвод, а если поверхность влажная, то скрытая теплота фазового перехода (парообразования) увеличит эффект. Тепловое излучение окружающих предметов вряд ли будет замечено обычным бытовым термометром — мы ощущаем тепловое излучение костра и электроплиты, находясь от огня или нагревателя в метре, но разность температур в этих случаях составляет сотни градусов, а не единицы. Теплосъем излучением при тех температурах, которые бывают за окном, не превосходит 2 Вт/м2К порядка, в то время как естественная конвекция при геометрии термометра обеспечит 70 Вт/м2К. Самое сильное влияние на показания оказывает солнечное излучение, даже говорят «температура в тени», «температура на солнце» (не на Солнце!). Разумеется, никакой «температуры на солнце», как характеристики погоды, не существует. Температура, до которой нагреется термометр, определяется его оптическими свойствами, то есть коэффициентами черноты в оптическом диапазоне. В худшем случае, если излучение поглощается все (1,5 кВт/м2), перегрев при указанных выше значениях теплоотдачи будет составлять 20 °C, что примерно и наблюдается на практике (из ностальгических соображений расчет проведен согласно книге Б.М.Царев «Расчет и конструирование электронных ламп»).

С другой стороны, понятие «температура на солнце» имеет вполне ясный прикладной смысл. Эта величина дает информацию о том, жарко ли будет на солнце лично мне. Ответ на этот вопрос зависит не только от температуры воздуха и мощности солнечного излучения, но также от скорости ветра и влажности воздуха. Не говоря уж о моих личных характеристиках — например того, мокрый я или сухой и как одет. Можно конечно сообщать отдельно все четыре величины, но человеку для оценки того, что там происходит, сильно ли опять ошиблись эти, как их… и наконец, что надеть, нужна какая-то одна величина. То есть возникает проблема выработки нового понятия. Это понятия «эквивалентная температура» и «ветро-холодовой индекс».

Ветро-холодовой индекс Сэйпла (автора большинство авторов не указывает) зависит от температуры и скорости ветра и определяется как температура при отсутствии ветра, при которой человек будет чувствовать себя так же, как при наличных температуре и скорости ветра (http://spravki.net.ru/usefull/veter.htm или http://www.zlatoust.ru/various/wind.html).

Эквивалентная температура определяется несколькими различными способами. Метеорологи говорят, что эквивалентная температура соответствует той температуре воздуха, которую он имел бы после конденсации всего содержащегося в нём водяного пара при неизменном атмосферном давлении (http://www.sovets.ru/Itisinteresting/weather/weather_and_curious/5491.htm).

Занимающиеся условиями труда и промсанитарией полагают, что она характеризует воздействие на человека температуры воздуха, радиационной температуры и скорости движения окружающего воздуха и вычисляется по показаниям сухого и влажного термометров и анемометра (http://www.diclib.com/cgi-bin/d1.cgi?l=ru&base=medical&page=showid&id=31786).

Встречаются в литературе и иные определения, используют выражение «условная температура» и, возможно, другие.

Сделать из четырех параметров один можно разными способами, и что способ, который в итоге избирает традиция, определяется удобством для практики. Дать универсальное определение невозможно, потому что воздействие атмосферных условий на человека зависит не только от параметров атмосферы и окружения (облучения), но и от того, что он делает, как одет и его индивидуальных особенностей (как потеет, как воспринимает). Метролог должен понимать это, уметь разобраться в существующих определениях, не покупаясь на бессмысленные реплики «как определено» или «как известно» в рекламных материалах, понять, установить область эффективности понятий и при необходимости предложить свое сто первое.