5.4.4. ИСТОЧНИКИ НАПРЯЖЕНИЙ И ТОКОВ ДЛЯ ИСПЫТАНИЙ ЭЛЕКТРООБОРУДОВАНИЯ
5.4.4. ИСТОЧНИКИ НАПРЯЖЕНИЙ И ТОКОВ ДЛЯ ИСПЫТАНИЙ ЭЛЕКТРООБОРУДОВАНИЯ
Изоляция электрооборудования при эксплуатации подвергается воздействиям не только рабочего напряжения, но и перенапряжений промышленной частоты, а также импульсных перенапряжений, возникающих при ударах молнии в линии электропередачи или вблизи них, при плановых или аварийных коммутациях в системе. Для испытаний изоляции на стойкость к воздействиям перенапряжений, а также для определения характеристик изоляции, таких как ее фактическая прочность, диэлектрические показатели, уровень частичных разрядов и др., применяются специальные испытательные установки высокого напряжения. Это прежде всего установки переменного напряжения промышленной частоты и генераторы импульсных напряжений, имитирующие тот или иной вид перенапряжений. Аналогичные установки используются и для других целей, например, для исследований электрического разряда, в электрофизической аппаратуре, при имитации ударов молнии и т.д. Рассмотрим типичные испытательные установки.
Испытательные установки переменного напряжений промышленной частоты. В зависимости от класса напряжения и характеристик испытуемого объекта для получения испытательных напряжений используются отдельные трансформаторы, каскадные устройства на базе трансформаторов или резонансные схемы.
В отличие от силовых испытательные трансформаторы выполняются однофазными и работают в кратковременном режиме. Поэтому они не имеют развитой системы охлаждения. Их номинальное напряжение в зависимости от назначения обычно лежит в пределах от нескольких десятков до сотен киловольт. Рядом зарубежных фирм изготовлены уникальные трансформаторы напряжением 750–1200 кВ. Номинальные токи испытательных трансформаторов обычно составляют 0,1–10 А. Важной особенностью выполнения испытательных трансформаторов является стремление предельно снизить уровень собственных частичных разрядов и индуктивность рассеяния. Первое позволяет более точно измерять частичные разряды в испытуемом объекте, второе — соединять трансформаторы в каскадные схемы.
Из экономических соображений для получения предельно высоких испытательных напряжений целесообразно использовать каскадное последовательное включение испытательных трансформаторов, имеющих на стороне высокого напряжения специальную обмотку для питания следующей ступени. Обычно каскадные схемы состоят из четырех трансформаторов, причем первая ступень состоит из двух параллельно включенных трансформаторов. Трехступенчатыми каскадами напряжением 2250 кВ и мощностью 5 MB?А оснащены крупнейшие исследовательские лаборатории России (НИИПТ, СПГТУ, СибНИИЭ и др.), производства фирмы TuR (г. Дрезден, Германия). Уникальный трехступенчатый каскад напряжением 3 MB производства этой же фирмы установлен на открытой площадке ВЭИ (г. Истра).
При испытаниях объектов с большой емкостью, таких как кабели, шинопроводы, элегазовые устройства, используются резонансные схемы. В них испытуемый объект соединяется последовательно с катушкой индуктивности. Питание осуществляется от трансформатора номинальным напряжением порядка 10 кВ. За счет резонанса напряжений на объекте создается испытательное напряжение, во много раз превышающее напряжение питающего трансформатора. Использование резонансных схем позволяет существенно снизить стоимость испытательной установки.
Испытательные установки постоянного высокого напряжения. Изоляция электрооборудования электропередач постоянного тока, а также некоторого оборудования промышленной частоты, например кабелей городских сетей, испытывается постоянным напряжением. Для получения постоянного напряжения до 100 кВ используются испытательные или иные маломощные трансформаторы в комбинации с выпрямительным элементом. При более высоких напряжениях применяют каскадные выпрямители, состоящие из источника переменного высокого напряжения и ступеней умножения напряжения, содержащих конденсаторы и выпрямители. С помощью каскадных выпрямителей получают испытательные постоянные напряжения до 2 MB при токах до 1 А. Еще большие постоянные напряжения дают каскадные выпрямители, предназначенные для питания ускорителей элементарных частиц.
Другой вид источников постоянных высоких напряжений — электростатические генераторы, принцип действия которых основан на механическом переносе заряда с помощью движущейся ленты или вращающихся диска либо барабана, для испытания изоляции используется чрезвычайно редко. Однако в технике высоких напряжений электростатические генераторы находят применение в качестве эталонов высокого напряжения, отличающихся высокой стабильностью и отсутствием пульсаций.
Генераторы импульсных напряжений и токов. Импульсные воздействия на изоляцию подразделяются на грозовые и коммутационные. Грозовые перенапряжения проявляются в виде импульсов, поступающих по линиям. В формировании импульсов принимают участие как амплитуда и крутизна тока главного разряда молнии, так и перекрытия изоляции на линии, корона на линии. В результате статистического обобщения данных о грозовых импульсах, приходящих на подстанции, импульс грозовых перенапряжений нормирован. Считается, что длительность фронта составляет 1,2 мкс, а длительность самого импульса (до половины амплитудного значения) равна 50 мкс. При перекрытиях изоляции или срабатывании защитных устройств вблизи рассматриваемого объекта возникает так называемый срезанный импульс, имеющий такой же фронт, как и полный, однако гораздо меньшую длительность (2–5 мкс). Для получения испытательных грозовых импульсов используются специальные генераторы, принцип действия которых основан на умножении напряжения при переключении заряженных конденсаторов с параллельного соединения на последовательное. Впервые этот принцип умножения напряжения описан в 1914 г. В.К. Аркадьевым и Н.Н. Баклиным, а в 1923 г. на аналогичную схему получил патент Э. Маркс (Германия).
Генераторы импульсных напряжений, используемые для исследований электрического разряда, для испытаний макетов и готовой изоляции, созданные в разных странах и в разное время, различаются по параметрам и конструкции. Существуют различные варианты генераторов как для внутренней, так и для наружной установки. Генераторы для наружной установки выполняются в виде изоляционных башен, лестничных конструкций, подвесных устройств и т.п. Еще более разнообразны разновидности генераторов для внутренней установки: этажерочные, колонковые, многомаршевые лестничные, подвесные, башенные, передвигаемые по рельсам или на воздушной подушке, выполненные в изоляционном баке, с заполнением элегазом и т.п.
Уникальные генераторы были созданы в нашей стране. Так, на открытой площадке Харьковского электротехнического института в 30-е годы был сооружен генератор суммарным зарядным напряжением 8,3 MB и накапливаемой энергией 500 МДж, разрушенный во время Великой Отечественной войны. В ВЭИ (г. Истра) на открытой площадке установлен генератор в виде изоляционной башни напряжением 9 MB и энергией 1,35 МДж, на котором возможно испытание изоляции классов напряжения до 2 MB.
Разнообразными генераторами внутренней установки фирмы TuR напряжением до 7,2 MB и энергией до 1 МДж оснащены практически все российские организации, занимающиеся разработками и испытаниями изоляционных конструкций высокого напряжения.
Генераторы импульсных напряжений снабжаются вспомогательными устройствами, являющимися составной частью разрядного контура, формирующего требуемый импульс: измерительным шаровым разрядником, устройством среза напряжения, делителем высокого напряжения, нагрузочным конденсатором, набором сменных резисторов и т.д. Установкой резисторов с разными сопротивлениями достигается изменение формы выходного импульса генератора.
Коммутационные импульсы перенапряжений имеют иную природу, чем грозовые, и соответственно иные параметры.
Формирование коммутационных импульсов происходит в результате переходных процессов в цепях, образованных емкостями, индуктивностями, сопротивлениями объекта и соседнего оборудования, участками линий электропередачи между местом коммутации и рассматриваемым объектом. Так как схема передачи и параметры ее элементов могут быть самыми разнообразными, то и параметры коммутационных импульсов могут сильно отличаться. Причем отличие может состоять не только в амплитуде, но и в форме импульса и его временных параметрах. Основным стандартизированным коммутационным импульсом является апериодический с временем нарастания 250 мкс и длительностью 2500 мкс. Кроме того, установлены и иные временные параметры и формы коммутационных импульсов: колебательные с переходом и без перехода через нуль. Соответственно различаются и устройства для получения испытательных коммутационных импульсов.
Апериодические коммутационные импульсы получают, как правило, от генераторов импульсных напряжений, предназначенных для формирования грозовых импульсов, путем замены резисторов, входящих в схему генераторов. Колебательные импульсы требуют включения в разрядную цепь генератора дополнительных катушек индуктивности. При этом катушки могут быть включены как в ступенях генератора, так и на его выходе. Один из способов получения коммутационных импульсов, разработанным в ЛПИ, заключается в разделении генератора импульсных напряжений на две части, одна из которых имеет фронтовые резисторы, а вторая — катушки индуктивности.
При зарядке частей генератора напряжениями разных полярностей можно на выходе генератора получить напряжение, равное сумме апериодического и колебательного затухающего импульсов, сформированных разными частями генератора.
Другой возможностью получения коммутационных импульсов колебательной формы является импульсное питание испытательного трансформатора или каскада трансформаторов. Для этого разработаны конденсаторные приставки к испытательным трансформаторам, состоящие из двух групп конденсаторов и коммутатора. При разряде этих групп конденсаторов, присоединенных к первичной обмотке трансформатора и заряженных напряжениями разных полярностей (одной через резистор, а второй через катушку индуктивности), на первичной обмотке трансформатора формируется импульс напряжения, содержащий апериодическую и колебательную составляющие.
Преимущество использования каскадной схемы испытательных трансформаторов заключается в том, что возможно реализовать наложение в нужный момент коммутационного импульса на синусоидальное напряжение промышленной частоты, включив конденсаторную приставку в последнюю ступень каскада.
Испытания изоляции напряжением промышленной частоты, грозовыми и коммутационными импульсами являются лишь частью испытаний электрооборудования. Так, некоторые виды оборудования требуют испытаний импульсными токами. Коммутационная аппаратура подлежит испытаниям на отключающую способность, электродинамическую устойчивость. Защитная аппаратура (разрядники, ограничители перенапряжений) должна испытываться на устойчивость при прохождении через нее импульсов тока, обусловленного грозовыми или коммутационными перенапряжениями. Техника получения испытательных токов базируется на использовании либо ударных генераторов, либо емкостных накопителей энергии. Так, для имитации токов коротких замыканий при испытании электрооборудования в 1924 г. на заводе «Электросила» был изготовлен первый машинный генератор импульсных токов. В 1937 г. А.А. Горев впервые предложил использовать колебательный контур для получения сильных токов промышленной частоты — «контур Горева». За разработку метода и создание установки проф. А.А. Горев и его сотрудники были удостоены в 1948 г. Государственной премии СССР.
Следует отметить еще одну проблему, связанную с испытаниями разнообразных объектов, в том числе и электрооборудования, на устойчивость при прямых ударах молнии. Для имитации удара молнии в объект на кафедре техники и электрофизики высоких напряжений МЭИ созданы уникальные установки, способные в реальных масштабах амплитуд и времени воспроизводить сложные по форме импульсы тока, включая многокомпонентные токи молнии.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Расчет токов короткого замыкания для проверки электрических аппаратов и проводников по условиям короткого замыкания
Расчет токов короткого замыкания для проверки электрических аппаратов и проводников по условиям короткого замыкания Вопрос. Какие условия принимаются при составлении расчетной схемы электроустановок напряжением до и выше 1 кВ и расчете токов КЗ с целью проверки
Глава 1.8. НОРМЫ ПРИЕМОСДАТОЧНЫХ ИСПЫТАНИЙ
Глава 1.8. НОРМЫ ПРИЕМОСДАТОЧНЫХ ИСПЫТАНИЙ Общие положения Вопрос. Какое электрооборудование должно быть подвергнуто приемосдаточным испытаниям?Ответ. Должно быть подвергнуто электрооборудование напряжением до 500 кВ, вновь вводимое в эксплуатацию. При проведении
Размещение и установка электрооборудования
Размещение и установка электрооборудования Вопрос. Какое электрооборудование и аппараты могут устанавливаться в ЭМП?Ответ. Могут устанавливаться:электрические машины;электромашинные преобразовательные агрегаты;пусковые и пускорегулирующие устройства для
Размещение электрооборудования
Размещение электрооборудования Вопрос. Каким условиям должно удовлетворять размещение электрооборудования регулируемых электроприводов?Ответ. Должно удовлетворять общим требованиям, изложенным в главах 4.3, 5.1, 5.3 настоящих Правил, а также техническим условиям на
Неисправности электрооборудования
Неисправности электрооборудования Аккумулятор требует внимания Аккумулятор в процессе эксплуатации разряжается медленно. Стартер прокручивает двигатель с малой частотой вращения Утечка тока через поврежденную изоляцию какого-либо провода или прибора – отсюда
46. Распределение касательных напряжений при равномерном движении
46. Распределение касательных напряжений при равномерном движении При равномерном движении потеря напора на длине lhe определяется: где ? – смоченный периметр,w – площадь живого сечения,lhe – длина пути потока,?, g – плотность жидкости и ускорение силы тяжести,?0 –
От испытаний к производству
От испытаний к производству Постановка на серийное производство танка Т-72 и инженерных машин вызвала революционные преобразования производства на «Уралвагонзаводе», обусловленные наращиванием мощностей, рассчитанных на резкое увеличение Государственного заказа на
Глава 1.8. НОРМЫ ПРИЕМО-СДАТОЧНЫХ ИСПЫТАНИЙ
Глава 1.8. НОРМЫ ПРИЕМО-СДАТОЧНЫХ ИСПЫТАНИЙ Общие положения Вопрос 1. Какое электрооборудование должно быть подвергнуто приемо-сдаточным испытаниям в соответствии с требованиями ПУЭ?Ответ. Должно быть подвергнуто электрооборудование до 500 кВ, вновь вводимое в
4.5 Заключение субподрядов на проведение испытаний и калибровок
4.5 Заключение субподрядов на проведение испытаний и калибровок 4.5.1 Если лаборатория заключает субподряд по непредвиденным причинам (например, перегруженность, необходимость в дополнительной экспертизе или временная неспособность) или на постоянной основе (например, на
5.6.2.2 Проведение испытаний
5.6.2.2 Проведение испытаний 5.6.2.2.1 В отношении испытательных лабораторий требования, приведенные в 5.6.2.1, применимы к используемому измерительному и испытательному оборудованию с измерительными функциями, если только не было установлено, что влияние калибровки на общую
5.9 Обеспечение качества результатов испытаний и калибровок
5.9 Обеспечение качества результатов испытаний и калибровок Лаборатория должна располагать процедурами управления качеством с тем, чтобы контролировать достоверность проведенных испытаний и калибровок. Результаты должны регистрироваться так, чтобы можно было выявить
6.2.2. Особенности летных испытаний
6.2.2. Особенности летных испытаний Летные испытания, играющие весьма важную роль в отечественной практике для оценки основных характеристик ЛА и их соответствия требованиям наземных испытаний и исследований, как правило, за рубежом имеют значительно меньшее значение.
Завершен первый этап испытаний SaM146
Завершен первый этап испытаний SaM146 НПО «Сатурн» завершило первый этап стендовых испытаний первого опытного двигателя нового поколения SаM146, создаваемого предприятием совместно с французской компанией «Снекма» (группа компаний «Сафран») для перспективных
Общая схема электрооборудования
Общая схема электрооборудования Электрооборудование автомобилей представляет собой сложную систему соединенных между собой электроприборово сигнализации, зажигания, предохранителей, контрольно – измерительных приборов, соединительных проводов. Рис.
5.4.3. КООРДИНАЦИЯ ИЗОЛЯЦИИ И МЕТОДЫ ЕЕ ИСПЫТАНИЙ
5.4.3. КООРДИНАЦИЯ ИЗОЛЯЦИИ И МЕТОДЫ ЕЕ ИСПЫТАНИЙ Координацией изоляции электрооборудования называется взаимное согласование значений воздействующих напряжений (перенапряжений), электрических характеристик защитной аппаратуры и изоляции оборудования, обеспечивающее