6.2.2. Особенности летных испытаний
6.2.2. Особенности летных испытаний
Летные испытания, играющие весьма важную роль в отечественной практике для оценки основных характеристик ЛА и их соответствия требованиям наземных испытаний и исследований,
как правило, за рубежом имеют значительно меньшее значение. Действительно, осуществление на практике принципа «испы-тывай все перед полетом» дает возможность до 80 % характерис-тик получить на земле. Стоимость 1 ч летных испытаний почти в 100 раз больше 1 ч наземных, поэтому покупатели, заплатив немалые акцепты, ждут получения самолетов для начала при-быльной эксплуатации, рынок испытывает давление со сторо-ны конкурентов. Воистину: «время – деньги».
В этих условиях период летных испытаний не рассматривается как созидательный, познавательный этап, а лишь как контрольный, зачетный, открывающий путь для получения дивидендов авиакомпа-ниями и фирмами-производителями. В этом видят основной смысл летных испытаний, и поэтому их стремятся провести как можно быстрее, сосредоточившись лишь на тех видах, которые с доста-точной уверенностью нельзя смоделировать в наземных условиях.
Рассматривая летные испытания большей частью как потерян-ное время, тем не менее фирмы признают их несомненно важ-ным моментом подтверждения в реальных условиях высоких характеристик ЛА, осуществляя второй основополагающий прин-цип – «летай, перед тем как продавать». Как правило, результа-ты летных испытаний дают лишь 5–7 % разброса с наземными испытаниями и расчетными данными.
Основные особенности проведения летных испытаний состоят в следующем:
• основной акцент ставится на крайние режимы по безопас-ности и надежности для максимального «открытия» областей безопасной эксплуатации и подтверждения расчетных данных (в первую очередь, большие углы, флаттер, посадка на боль-ших углах, обледенение и др.);
• по требованиям FAA (Федеральные авиационные власти США) и покупателей проводится демонстрация фактических за-пасов по надежности, прочности и безопасности (экстренное торможение на взлете, покидание пассажирами аварийного са-молета и др.) по сравнению с расчетными нормами;
• наземные демонстрации эксплуатационной технологичное-ти проводятся с хронометражем операций;
• резко сокращено время летных испытаний (до 911 ? меся-цев) с одновременным повышением их качества.
Сокращение времени летных испытаний осуществляется за счет:
• проведения основного объема испытаний (80 %) в наземных условиях, максимально приближенных к эксплуатационным, и, самое важное, сертификации по их результатам;
• организации, планирования и управления летными испытаниями как части комплексной программы производства самолетов в целях повышения экономической эффективности разработки в целом;
• одновременного использования нескольких самолетов (до 5) с четким разделением целей и объемов испытаний по каждому;
• использования нескольких аэродромов с различными климатическими условиями (при интенсивном налете каждого самолета 35–40 летных часов в месяц);
• интенсивного (с циклом 3–4 месяца) подключения к испытаниям серийных самолетов, участвующих в испытаниях;
• комплексирования, насыщенности и целенаправленности программ летных испытаний, обеспечивающих их эффективность и качество;
• четкой методологической направленности программ и подчиненности задачам сертификации по нормам FAA (30 %) (из примерно 1500 полетов – 300 зачетных для подтверждения требований по нормам FAA);
• установки мощного автоматизированного экспериментального оборудования на борту самолетов для получения информационного массива данных и его отработки на борту в реальном масштабе времени;
• сопровождающего моделирования полета на земле в реальном масштабе времени;
• широкой автоматизации регистрации и обработки данных, как на земле, так и в полете, позволяющей иметь через 3 часа после полета полную информацию о результатах использования быстродействующих ЭВМ и дисплейных станций в режиме диалога «борт—земля», радио– и телекоммуникаций;
• умелого использования сопутствующих факторов (раннее подключение к наземным испытаниям летчиков-испытателей, благоприятные климатические условия, высокоавтоматизированная система управления воздушным движением и др.).