1.6. Будущее нанотехнологии
1.6. Будущее нанотехнологии
Только дурак может заниматься предсказаниями будущего
(древнекитайская поговорка)
Предсказание будущего действительно является рискованным и неблагодарным занятием. Для предвидения возможностей развития в любой области человеческой деятельности недостаточно иметь только обширные знания и опыт, а необходимо еще обладать интуицией, позволяющей угадывать фантастические возможности, скрытые в парадигмах существующей науки и технологии. Речь действительно идет об угадывании, а не о расчете, прежде всего потому, что физические законы окружающего нас мира могут «изменяться» при переходе к другим условиям или другому окружению. Особенно заметны такие изменения в ситуациях, когда технология используется в иных масштабах (например, в атомно-молекулярных). В мире нанометровых объектов и процессов зачастую совершенно теряют смысл привычные физические понятия типа массы, инерции и т. п., так что обычная механика (используемая, например, для создания и вождения автомобиля в нашем мире) становится бесполезной.
Представим, например, что мы опускаем соломинку в стакан с водой или коктейлем. В привычном нам макромире уровень воды в соломинке совпадает с общим уровнем в стакане (или, строго говоря, близок к нему). Однако если вместо соломинки использовать капиллярную трубку, то уровень жидкости в ней будет значительно превышать общий, поскольку внутри очень тонких трубок начинают проявляться капиллярные свойства жидкости, связанные с молекулярными взаимодействиями. Говоря проще, изменение масштабов объекта или процесса приводит к резкому изменению правил физической «игры» и проявлению новых свойств, которые нельзя было предвидеть заранее. Именно это и происходит в науке и технологии, как только исследователи начинают работать в диапазоне наноразмеров.
Вообще говоря, для успешного исследования явлений природы от ученого требуется прежде всего здравое понимание фундаментальных принципов науки и границ их применения. Ученый должен проверять применимость этих принципов на каждом этапе исследований, что, кстати, наглядно демонстрирует упоминавшаяся выше история с синтезом инсулина группой Бойера, Риггза и Итакуры. Отказавшие в гранте специалисты Национального института здоровья вовсе не были недобросовестными или неквалифицированными экспертами, но им просто не хватило опыта и «фантазии», чтобы представить себе процессы, основанные на совершенно новых принципах. Таким опытом и интуицией обладал Бойер, которому удалось убедить в своей правоте (попросту говоря, «продать» идею) Свансона, взявшего на себя практическую организацию новой технологии. Ему удалось найти финансирование для исследований по синтезу соматостатина, что и привело в дальнейшем к успеху в производстве инсулина.
Приведенные выше примеры и концепции из истории биотехнологий, конечно, весьма упрощают картину развития, которая в действительности выглядит значительно более сложной, однако наличие S-образных кривых и разрывов на них является фундаментальным и общим явлением для развития любой научной или технической отрасли. Кстати, эта закономерность прекрасно подтверждается и на современном этапе перехода от привычных биотехнологий к нанотехнологиям. Например, существующие биотехнологии основаны на использовании природных ферментов, которые химики и биологи (благодаря своим знаниям и мастерству) научились «вырезать» и «вставлять» в нужные места на молекулах ДНК. Такие генные манипуляции с естественными ферментами и являются основой технологии, превращающей бактерии в своеобразные фабрики или химические реакторы для производства требуемых препаратов и веществ. Однако сейчас становится ясным, что дальнейший прогресс в этой области будет связан с множеством новых явлений, наблюдаемых в нанометрической области. Для коммерциализации новых методик ученым необходимо получить более достоверные сведения об этих процессах и научиться уверенно управлять ими. Любое серьезное открытие в этой области имеет шанс найти свой «рынок», получить инвестиции и быстро развиться в полноценное и высокоэффективное коммерческое производство.
В качестве интересного и поучительного примера можно привести следующий. Еще в 1905 году Вильям Кобленц из Национального бюро стандартов США (Вашингтон, округ Колумбия) сумел обнаружить и изучить связь между химической структурой молекул и их спектром поглощения в инфракрасном диапазоне излучений[13]. Это замечательное научное открытие долгое время оставалось лишь базой для красивых теоретических работ, и лишь в 1942 году на его основе был создан первый коммерческий образец инфракрасного спектрометра. В настоящее время такие приборы (позволяющие измерять поглощение света в виде функции от длины волны) используются практически в любой лаборатории, но их развитие сдерживалось отсутствием спроса. Острая потребность в таких спектрометрах возникла только в годы Второй мировой войны (в связи с развитием производства синтетического каучука), в результате чего почти немедленно было создано мощное коммерческое производство, удовлетворяющее постоянно растущую потребность рынка. Возможно, в случае нанотехнологий мы столкнемся не с бурным развитием, а с постепенным, эволюционным расширением рынков и производств.
Прогнозирование будущего – сложная и рискованная затея, но я предложу читателям простой мысленный эксперимент. Попробуйте представить себе историю развития и постепенного улучшения свойств волокон. Когда-то человечество пользовалось только натуральными волоконными материалами (пенька, шелк и хлопок). Улучшение характеристик описывалось одной S-образной кривой до тех пор, пока не появились синтетические волокна типа нейлона. Количество и качество таких волокон постоянно увеличивается, а общие тенденции их развития описываются другой, но тоже S-образной кривой. В настоящее время нанотехнология позволяет создавать совершенно новые материалы и волокна на их основе, так что я предлагаю читателю (опираясь на технический опыт, интуицию и фантазию) попробовать представить следующую S-образную ветвь развития, а также подумать о необычных применениях таких волокон, возможной технологии их производства и коммерческой ценности в различных областях.
Именно такие размышления можно назвать прогнозом развития нанотехнологий, и им посвящена данная книга.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
С прицелом на будущее
С прицелом на будущее «Иглы» активно использовали и продолжают использовать в качестве летающих лабораторий. В 1982 г. на F-15A прошел летные испытания опытный двигатель F100-DEEC с перспективной цифровой системой управления. Было выполнено 30 полетов, которые подтвердили
Прошлое и будущее
Прошлое и будущее Ниже приведено несколько таблиц с информацией, которая может заинтересовать читателя. Существует распространенное мнение о том, что выигрышные эггрегэйты за последние годы упали. Изучив приведенные ниже данные, я обнаружил наличие тренда к понижению,
Нанотехнологии
Нанотехнологии Нанотехнологии представляют собой исследования и создание объектов имеющих молекулярные или даже атомарные размеры. В настоящее время оказалось возможным создание электронных или механических компонентов на основе отдельных атомов. Подобные
Глава 4. Коммерциализация нанотехнологии. Работает ли закон Мура в микро– и наноэлектронике?
Глава 4. Коммерциализация нанотехнологии. Работает ли закон Мура в микро– и наноэлектронике? Стив ДжарветсонСтив Джарветсон является административным управляющим фирмы Draper Fisher Jurvetson (DFJ.com), а также основателем крупных венчурных фирм Hotmail, Interwoven и KANA. Кроме этого, он
4.4. Коммерциализация нанотехнологии
4.4. Коммерциализация нанотехнологии В определении нанотехнологии часто используется или упоминается возможность манипуляции и управления объектами нанометрического размера (обычно речь идет о диапазоне 1—100 нм). Давно замечено, что использование масштаба длины в
4.4.5. Как выглядит масштабная иерархия в молекулярной нанотехнологии?
4.4.5. Как выглядит масштабная иерархия в молекулярной нанотехнологии? Описанная выше иерархия взаимодействий представляет собой одну из важнейших проблем в развитии любой техники. Интересно, что нанотехнология предлагает нам одновременно два пути преодоления этого
4.5.2. Ускорители нанотехнологии. Квантовое моделирование и масштабные эксперименты
4.5.2. Ускорители нанотехнологии. Квантовое моделирование и масштабные эксперименты Выше говорилось о том, что научные достижения имеют тенденцию «эмигрировать» из лабораторий и превращаться в инновационные проекты, причем этот процесс протекает ускоренно, что и
5.1.1. Вложение венчурных капиталов в нанотехнологии
5.1.1. Вложение венчурных капиталов в нанотехнологии Представляется очевидным, что нанотехнологии относятся не к отдельному, сектору рынка, а скорее представляют собой целый набор уже существующих (и бурно развивающихся) новых технологий, способных внести весьма
Глава 6. Государственная политика США в области нанонауки и нанотехнологии
Глава 6. Государственная политика США в области нанонауки и нанотехнологии Джеффри М. ХолдриджДжеффри М. Холдридж является вице-президентом некоммерческой корпорации WTEC Inc., обеспечивающей юридическое обслуживание федеральных министерств и агентств при заключении
6.1. Национальная нанотехнологическая инициатива (ННИ) и Акт о развитии нанотехнологии в XXI веке
6.1. Национальная нанотехнологическая инициатива (ННИ) и Акт о развитии нанотехнологии в XXI веке Программа, получившая название Национальная нанотехнологическая инициатива США (ННИ), была принята в 2000 году, когда стало очевидным, что преобразования вещества в
Глава 7. Обзор академических исследований США в области нанотехнологии
Глава 7. Обзор академических исследований США в области нанотехнологии Джулия ЧенДжулия Чен является директором Нанотехнологического центра университета Лоуэлл (штат Массачусетс), где одновременно заведует лабораторией композитных материалов и тканей. Ее научная
7.1.4. Сеть вычислительной нанотехнологии (Network for Computational Nanotechnology, NCN)
7.1.4. Сеть вычислительной нанотехнологии (Network for Computational Nanotechnology, NCN) Созданная в 2002 году университетом Пердю (город Лафайет, штат Индиана) сеть вычислительной нанотехнологии (NCN) объединяет несколько крупных университетов, связанных с новейшими разработками
Будущее Земли*
Будущее Земли* Мы говорим тут о будущем Земли, зависящем от самого человека, о будущем сравнительно ближайшем. Его близость зависит от нас самих, ее энергии. Главное — мысль. Она произведет все блага. Без сознания массы невозможен разумный прогресс.Можно преобразовать
Тема XIII. ИНЖЕНЕРНАЯ ДЕЯТЕЛЬНОСТЬ И НАНОТЕХНОЛОГИИ: СУЩНОСТЬ, ПЕРСПЕКТИВЫ РАЗВИТИЯ, ЗНАЧЕНИЕ
Тема XIII. ИНЖЕНЕРНАЯ ДЕЯТЕЛЬНОСТЬ И НАНОТЕХНОЛОГИИ: СУЩНОСТЬ, ПЕРСПЕКТИВЫ РАЗВИТИЯ, ЗНАЧЕНИЕ Человечество уверенно вступило в XXI век, который, как мы часто слышим, будет проходить под знаком генетики, биотехнологий и информационных технологий. Мы также слышим, что ученые
Российское будущее МКС
Российское будущее МКС На МАКС-2011 Ракетно-космическая корпорация (РКК) «Энергия» демонстрирует макет Международной космической станции (МКС) с полностью развернутым российским сегментом, включающим новые научные модули. Однако вскоре российский сегмент МКС может
XXIV. БУДУЩЕЕ
XXIV. БУДУЩЕЕ Усовершенствование кабелей и разработка надёжной конструкции подводных ламповых усилителей обусловили значительный прогресс в области трансокеанской связи.Успех, быстро завоёванный первым трансатлантическим телефонным кабелем 1956 года, способствовал