13.2.2. Производство наночастиц

We use cookies. Read the Privacy and Cookie Policy

13.2.2. Производство наночастиц

Методы производства наночастиц можно грубо разделить на три основные группы, традиционно называемые сухим синтезом, мокрым синтезом и химическим размолом. При этом первые два метода относятся к так называемому восходящему производству (снизу вверх), поскольку наночастицы в них создаются из атомных прекурсоров (веществ-предшественников), а третий метод является очевидным примером нисходящего (сверху вниз) производства, когда мелкие частицы производятся за счет дробления и измельчения более крупных. Мокрый синтез включает в себя преципитацию и методику золь-гель, а сухой синтез – получение наночастиц множеством разных способов (горением, печным синтезом, плазмохимией и т. д.).

Независимо от метода производства основная цель состоит в получении нанопорошков с узким гранулометрическим распределением (то есть с узкой функцией распределения по размерам), а также в предотвращении возможной агломерации образующихся частиц. Ни один процесс не обеспечивает синтеза абсолютно одинаковых по размеру частиц, что заставляет исследователей искать новые методы «исправления» гранулометрического распределения. Чаще всего так называемые хвосты распределений убирают при вспомогательных технологических операциях, что обычно приводит к снижению производительности. Гораздо более сложной является проблема агломерации (слипания) частиц, так как наночастицы всегда характеризуются очень высоким значением отношения поверхность/объем, и для них процесс слипания является термодинамически очень выгодным. По этой же причине из нанопорошков тугоплавких соединений можно «сплавлять» объемные изделия при температурах ниже точки плавления, что уже давно применяется в промышленных производствах.

Требования к гранулометрическому распределению и агломерации порошков, естественно, сильно зависят от целей их дальнейшего использования. Например, эти требования должны очень строго выполняться при создании некоторых специальных нанообъектов (типа упоминавшихся выше флуоресцентных квантовых точек), но они не столь важны при использовании порошков для упомянутой выше химико-механической планаризации полупроводниковых кристаллов. Как и в любой другой отрасли производства, каждый метод получения нанопорошков обладает своими достоинствами и недостатками, а выбор обычно определяется конкретными задачами и условиями. Классическое измельчение является очень энергоемким, не говоря уже о том, что оно непригодно для получения порошков из целого ряда очень перспективных веществ, особенно из чистых металлов. В популярном и распространенном методе преципитации для предотвращения слипания частиц обычно в суспензию наночастиц вводят так называемые защитные лиганды, что, естественно, осложняет производственный процесс в целом, так как при последующих технологических операциях эти лиганды приходится химически удалять с поверхности частиц.

Проблемы агломерации для некоторых материалов исчезают при высокотемпературном синтезе частиц, когда разделение частиц и их закалка происходят одновременно. Однако такие процессы трудно осуществлять в промышленных масштабах, и они требуют больших затрат энергии. Кроме того, такой метод непригоден для получения порошков из некоторых материалов (например, окиси кремния), так как они при высокой температуре могут переходить в так называемое вязкое стеклообразное состояние. В некоторых случаях агломерация не происходит вообще из-за физических особенностей самого процесса производства, например, вследствие того, что образующиеся при дуговом распылении или в плазменной струе наночастицы оказываются электрически заряженными.

Данный текст является ознакомительным фрагментом.