Компьютер превращается…

Видеть легко, трудно предвидеть.

Бенджамин Франклин

...в осциллограф

Один из самых необходимых приборов для домашней радиолаборатории — осциллограф. Осциллограф — это двухмерный вольтметр, который показывает, как изменяется напряжение во времени. На практике часто используются аналоговые модели (они наиболее распространены из-за относительно низкой цены — самый простой из них можно купить за $80…100) и современные цифровые осциллографы (стоят от $3000 — как автомобиль). Цифровые осциллографы имеют более широкие возможности (запоминание коротких процессов, измерение характеристик, изучение спектров и др.).

С устройством аналогового осциллографа вы уже знакомы по первой книге. В нем входной сигнал усиливается до нужного уровня и подается на отклоняющие пластины осциллографической трубки.

Цифровые осциллографы содержат на входе аналого-цифровой преобразователь, а также миниатюрный компьютер для обработки сигнала и его представления на экране. Если в любой современный компьютер установить хороший аналого-цифровой преобразователь (АЦП) и соответствующее программное обеспечение, то он легко превращается в осциллограф. Собственно, этим и занимаются некоторые фирмы, разрабатывая модули АЦП, подключаемые к любому универсальному компьютеру. В этом случае вы получите цифровой осциллограф и ряд других приборов на основе своего компьютера. Правда, цена таких модулей пока довольно высока (от $100 до $1000) и за эти деньги вполне можно приобрести простейший аналоговый осциллограф, но обычно программное обеспечение, идущее в комплекте, позволяет использовать приставку и как анализатор спектра.

В современном бытовом компьютере обязательно есть звуковая карта, а значит есть и АЦП, правда, не такой быстродействующий и совершенный, как в специализированном модуле. Но все же звуковая карта позволяет при помощи программы превратить компьютер в простейший осциллограф. Ниже будет приведен перечень этих программ и их особенности, но следует знать некоторые общие ограничения возможностей такого прибора (ведь звуковая карта изначально для этих целей не предназначалась):

1. На входе звуковой карты имеется конденсатор, что не позволяет наблюдать постоянный уровень сигналов. Это эквивалентно наличию у классического осциллографа только так называемого «закрытого» входа (закрытого для прохождения постоянного тока). А так как на входе усилителя звуковой карты стоят низковольтные развязывающие конденсаторы, подавать переменный сигнал, имеющий уровень постоянной составляющей более 5 В, нельзя. Эту проблему поможет решить простой адаптер, показанный на рис. 16.1.

Рис. 16.1. Адаптер для защиты входов звуковой карты компьютера (а) и назначение гнезд разъемов (б) в карте SB для Creative Live 5.1

Схема позволит подавать на вход звуковой карты сигналы с уровнем постоянной составляющей до 150 В (зависит от рабочего напряжения у примененных конденсаторов). При этом диоды VD1—VD8 (могут использоваться любые кремниевые импульсные) ограничивают амплитуду входного переменного сигнала на уровне 1,2…1,4 В — они не оказывают никакого влияния на нормальный входной сигнал, который не превышает 250 мВ.

2. У большинства звуковых карт ограничен линейный участок усилителя диапазоном напряжений до 100…250 мВ. Это значит, что если сигнал на входе (Line in) имеет уровень больше указанного, то, чтобы его наблюдать без ограничения, необходимо применять внешний делитель напряжения. Превышение амплитуды входного сигнала более 5 В может повредить вход, так что следует проявлять осторожность (приведенный на рис. 16.1 адаптер эту проблему устраняет, позволяя регулировочными резисторами уменьшить сигнал до приемлемого уровня).

3. Входное сопротивление звуковой карты обычно не превышает 14…50 кОм — для профессиональных осциллографов в диапазоне низких частот оно должно быть не менее 1 МОм. Повысить входное сопротивление и одновременно увеличить чувствительность осциллографа на основе звуковой карты несложно: достаточно установить каскад усилителя на полевом транзисторе.

На рис. 16.2 показан один канал такого усилителя. Второй транзистор в схеме включен как эмиттерный повторитель, что улучшает согласование. Усиление у такой схемы небольшое (3…5), но зато полоса намного превышает возможности любой карты (до 100 кГц).

Рис. 16.2. Широкополосный малошумящий входной усилитель сигнала

4. Полоса наблюдаемых сигналов ограничена полосой звуковой карты, а это примерно 10…24000 Гц (любой простейший аналоговый осциллограф имеет полосу не хуже 0…10 МГц). На краях диапазона имеются «завалы», поэтому реальная полоса звуковой карты при неравномерности 1 дБ обычно составляет 100… 19000 Гц (на уровне -3 дБ полоса 15…20500 Гц). Отличие каналов не превышает 0,3 дБ.

5. Для использования карты в качестве измерительного осциллографа ее необходимо откалибровать для каждой конкретной программы. Только в этом случае по показаниям на экране можно будет судить о реальной амплитуде сигнала, т. е. проводить измерения.

6. Еще одна особенность, которую необходимо учитывать, — это отсутствие гальванической развязки между компьютером и цепями измерения. Для большинства измерений это нестрашно, к тому же во многих опасных ситуациях спасет адаптер с защитными диодами и высоковольтным конденсатором, (рис. 16.1), но в некоторых случаях возможно появление высокого напряжения на общем проводе входов. Чтобы не столкнуться с неприятностями (повреждением входа Line in звуковой карты) при любых, даже неграмотно выполняемых подключениях можно установить гальваническую развязку сигналов обоих входов и выходов карты.

Чаще всего используют два способа выполнения развязки: на трансформаторе или на оптронах. Проще всего это сделать на трансформаторе (они более доступны и дешевы). Вариант такой схемы с развязывающим переходным трансформатором приведен на рис. 16.3 (показан один канал). Так как у нас два канала, а самостоятельно изготовить два трансформатора с идентичными параметрами довольно сложно, был использован унифицированный трансформатор из серии Т (он предназначен для звуковых частот).

Рис. 16.3. Вариант схемы приставки к звуковой карте компьютера с гальванической развязкой входного сигнала на трансформаторе

Для удобства использования в составе приставки имеется калибровочный генератор синуса с частотой 1 кГц (включается тумблером SA1). Для того чтобы наводка по цепям питания от генератора не проникала на вход компьютера, когда генератор не нужен, включатель SA1 обязательно должен иметь две группы контактов, одна из которых используется для коммутации питания. Уровень сигнала на выходе этого генератора устанавливается подстроечным резистором таким, чтобы ограничения сигнала в самой звуковой карте еще не было.

Приведенный усилитель имеет полосу по уровню -3 дБ от 100 Гц до 50 кГц (небольшой завал усиления в области низких частот связан с ограниченными возможностями трансформатора, но во многих приведенных ниже программах это удастся компенсировать). Для монтажа всех основных элементов этой приставки можно воспользоваться печатной платой, показанной на рис. 16.4.

Рис. 16.4. Топология печатной платы для размещения элементов (одного канала) и внешний вид монтажа

Теперь о самих программах поддержки. На компакт-диске их приведено довольно много, но по совместимости с современным компьютерным «железом» (в котором, как правило, установлен Windows) и удобству использования следует выделить:

 Oscilloscope 2.51 — программа позволяет превратить любую звуковую карту компьютера в двухканальный осциллограф с полосой до 20 кГц. Программа использует звуковую плату как аналого-цифровой преобразователь и представляет сигнал в реальном времени на экране монитора. Управлять работой такого виртуального осциллографа можно с экрана, как и обычным автономным прибором.

Например, можно изменять усиление и время развертки. Имеется возможность сохранять результат измерений в виде файла или через буфер обмена. Программа работает из-под Windows (4 файла с запускающим winscope.exe занимают 167 Кб). Автор К. Зельдович.

…в низкочастотный генератор

Для настройки схем или при анализе их работы нередко бывает нужен генератор сигналов. В этом качестве может использоваться даже самый простой компьютер. У компьютерного генератора на выходе звуковой карты Line out можно получить сигнал с уровнем, не превышающим 1,3 В (эффективное значение в «программах обозначается как RMS). Коэффициент нелинейных искажений (THD) для синуса у большинства карт на частоте 1000 Гц не превышает 0,03 % (имеющийся у некоторых карт мощный выход на динамики для качественных измерений лучше не использовать — там искажений намного больше).

Многие программы позволяют формировать, кроме синуса, еще целый набор сигналов различной формы.

Применяя компьютер, не следует забывать, что возможна опасная ситуация для карты, которая может привести к ее повреждению — закорачивание любого из двух линейных выходов (Line out) на общий провод. Тут требуется проявлять аккуратность, но лучше все же использовать адаптер. Например, простейший адаптер можно выполнить по одной из схем, показанных на рис. 16.5.

Рис. 16.5. Адаптер для выходного сигнала:

а — простейший на пассивных элементах; б — усилитель мощности на транзисторе (эмиттерный повторитель)

Пассивный адаптер дает только защиту, а активный, кроме защиты, повысит и нагрузочную способность выхода, обеспечивая усиление по току.

Из всего многообразия программ-генераторов здесь мы упомянем только три.

 Test Tone Geherator — пожалуй, это самый простой генератор сигналов в диапазоне 10…22050 Гц. Правда, такой диапазон обеспечит не каждая звуковая карта, и поэтому реально может получиться немного меньше. Форма выходного сигнала (Wawe Form) выбирается из трех вариантов: синус (Sine), меандр (Square) и треугольник (Triangular). Генератор может работать в режиме изменения частоты (Sweep) и позволяет задавать начальную и конечную частоты, а также продолжительность изменения (Duration) и выбирать цикличность процесса (Loop).

Работает из Windows, и инсталляция не требуется (файлы программы занимают 318 Кб).

 Marhand Function Generator — простой двухканальный генератор. Диапазон частот от 1 Гц до 20 кГц, а формируемый сигнал может быть синусоидальным (Sine), прямоугольным (Square), пилообразным (Sawtooth) и импульсным (Pulse).

Работает под Windows и не требует инсталляции (файл программы fg.exe занимает 69 Кб).

 WaveGen 1.0a — многофункциональный генератор, способный создавать формы сигнала: синус (sine); прямоугольник (square); треугольник (triangle); белый шум (white noise); розовый шум (pink noise); задаваемую пользователем (user); импульсный (impulse) и др. Диапазон частот от 10 Гц до 22050 кГц.

Работает из Windows (инсталляционный файл программы waveGenShare.exe занимает 1206 Кб).

В отношении компьютерных генераторов следует знать, что, кроме независимых (о которых шла речь), довольно совершенные генераторы имеются в составе многофункциональных измерительных программ — анализаторов аналоговых сигналов, о которых будет идти речь в следующей главе, а также звуковых редакторов, например Cool Edit 96 (эта программа есть на компакт-диске).

Следует отмстить, что в качестве звукового генератора можно использовать любую программу, способную воспроизводить звуковые файлы (в том числе имеющуюся в составе Windows), если создать (записать) файлы с нужными частотами в любом из цифровых форматов. Можно также записать нужные сигналы на компакт-диск в качестве звуковых дорожек (до 99), то есть сделать тестовый CD-диск. Это позволит его воспроизводить на любом CD-проигрывателе и использовать в качестве звукового генератора тестовых частот. Но все же специальные программы удобнее.