Глава 1 Основные физические законы в микроэлектронике
Уйди-уйди! — закричал вампир. — Мы так не договаривались. Я боюсь электричества.
Кир Булычев «Вампир Полумраке»
В наше время нередко можно встретить «эксперта» по английской культуре, не знающего английского языка, или «программиста», не разбирающегося в математической логике. Не будем им уподобляться, тем более что практическая электроника совсем не требует знаний на уровне физико-математического факультета МГУ. Вполне работоспособные схемы можно создавать и проектировать, обладая лишь багажом сведений в пределах 8-го класса средней школы, но уж в базовых понятиях из области электричества желательно ориентироваться как можно свободнее. Мы и начнем с того, что проясним их для себя раз и навсегда.
Чем отличается ток от напряжения?
Дурацкий вопрос, скажете вы? Отнюдь. Опыт показал, что не так уж и много людей могут на него ответить правильно. Известную путаницу вносит и язык: в выражениях вроде «имеется в продаже источник постоянного тока 12 В» смысл искажен. На самом деле в данном случае имеется в виду, конечно, источник напряжения, а не тока, т. к. ток в вольтах не измеряется. Самое правильное будет сказать — «источник питания постоянного напряжения 12 вольт», а написать можно и «источник питания =12В» где символ «=» обозначает, что это именно постоянное напряжение, а не переменное. Впрочем, и в этой книге мы тоже иногда будем «ошибаться» — язык есть язык.
Чтобы разобраться во всем этом, для начала напомним строгие определения из учебника (зазубривать их — очень полезное занятие!). Итак, ток, точнее, его величина, есть количество заряда, протекающее через сечение проводника за единицу времени: I = Q/t. Единица измерения тока — ампер, а ее размерность — кулоны в секунду (здесь и далее, кроме оговоренных случаев, мы будем употреблять систему единиц СИ). Знание сего факта пригодится нам позднее. Куда более запутанно выглядит определение напряжения, как разности потенциалов между двумя точками пространства. Измеряется она в вольтах и размерность этой единицы измерения — джоуль на кулон, т. е. U = E/Q. Почему это так, легко понять, вникнув в смысл строгого определения величины напряжения: 1 вольт есть такая разность потенциалов, при которой перемещение заряда в 1 кулон требует затраты энергии, равной 1 джоулю.
В этой главе мы будем говорить о постоянном токе и напряжении. Все это наглядно можно представить себе, сравнив проводник с трубой, по которой течет вода. При таком сравнении величина тока есть количество (расход) протекающей воды за секунду. Это довольно точная аналогия, роль молекул воды играют бегущие по проводнику электроны. Тогда напряжение предстанет, как разность давлений на входе и выходе трубы, за счет которой поток приобретает способность к движению.
Чаще всего труба заканчивается открытым краном, так что давление на выходе равно атмосферному давлению, и его можно принять за нулевой уровень. Точно так же в электрических схемах существует общий провод (или «общая шина» — в просторечии для краткости ее часто называют «землей», хотя это и не совсем точно), с нулевым потенциалом, относительно которого отсчитываются все напряжения в схеме. Обычно (но не всегда!) за общий провод принимают минусовой вывод основного источника питания схемы.
Итак, вернемся к вопросу в заголовке: чем же отличается ток от напряжения? Правильный ответ будет звучать так: ток — это количество электричества, а напряжение — мера его потенциальной энергии, способности к движению.
Напряжение и ток обычно связаны между собой. Слово «обычно» я употребил потому, что в некоторых случаях — для источников напряжения или тока, о которых мы поговорим в этой главе далее — от этой связи стараются избавиться, хотя полностью это сделать никогда не удается. Если вернуться к аналогии с трубой, то легко представить, как при возрастании давления (напряжения) увеличивается количество протекающей жидкости (ток), т. е. зависимость тока от напряжения довольно наглядна. Сложнее уяснить обратную зависимость: как ток влияет на напряжение. Для этого нужно сначала понять, что такое сопротивление.
Сопротивление
Вплоть до середины XIX века физики не знали, как выглядит зависимость тока от напряжения. Этому есть одна важная причина. Попробуйте сами экспериментально выяснить, как выглядит график этой зависимости. Схема эксперимента приведена на рис. 1.1, а примерные результаты — на рис. 1.2.
Рис. 1.1. Схема эксперимента по проверке закона Ома
Рис. 1.2. Примерные результаты проверки закона Ома
Показанные на графике результаты весьма приблизительны, т. к. вид кривой будет сильно зависеть от того, как именно выполнен проводник (R1 на рис. 1.2): намотан ли он плотно или редко на толстый массивный каркас или на тонкий, а также от температуры в комнате, сквозняка и еще от множества других причин. Именно такое непостоянство и смущало физиков — меняется не только ход кривой (т. е. ток в общем случае непропорционален напряжению), но вид и форма этой зависимости весьма непостоянны и меняются как при изменении условий внешней среды, так и для различных материалов.
Понадобился гений Георга Ома, чтобы за всеми этими деревьями увидеть настоящий лес: а именно понять, что зависимость тока от напряжения описывается элементарно простой формулой: I = U/R. А все несуразности проистекают от того, что сама величина сопротивления R зависит от материала проводника и от условий внешней среды, в первую очередь от температуры. Так, в нашем эксперименте загиб кривой вниз происходит потому, что при прохождении тока проводник нагревается, а сопротивление меди с повышением температуры увеличивается (примерно на 0,4 % на каждый градус). А вот сама величина этого нагрева зависит от всего, что угодно: намотайте провод поплотнее и заверните его в асбест, он будет нагреваться сильнее, а размотайте его и поместите на сквозняк — нагрев резко уменьшится.
В ознаменование заслуг Георга Ома единица измерения сопротивления так и называется — ом. Согласно формуле закона Ома, приведенной в предыдущем абзаце, 1 Ом есть сопротивление такого проводника, через который течет ток в 1 А при напряжении на его концах, равном 1 В. Обратная сопротивлению величина называется проводимостью и измеряется в сименсах, названных так в честь другого ученого: 1 Сименс = 1/Ом. В электронике почти всегда оперируют величиной сопротивления, так что сименсы мы в основном оставим для физиков, хотя иногда прибегать к ним приходится.
Сопротивление проводника зависит от его геометрических размеров: оно увеличивается пропорционально длине и уменьшается пропорционально площади сечения: R = ρ∙L/S. Большое практическое значение имеет коэффициент пропорциональности ρ — т. н. удельное сопротивление материала проводника. При определенной температуре (обычно берется 20 °C) эта величина почти постоянна для каждого материала. «Почти» я тут написал потому, что на самом деле эта величина сильно зависит от химической чистоты и даже от способа изготовления материала проводника. Поэтому для проводников употребляют очень чистые металлы, скажем, обычный медный провод изготавливают из меди с количеством примесей не более 0,1 % (как говорят, с чистотой в «три девятки»). Это позволяет уменьшить сопротивление такого провода и избежать лишних потерь на его нагрев.
Удельное сопротивление проводника, по определению, есть сопротивление (Ом) проводника единичной площади (м2) и длины (м). Если подставить эти величины в предыдущую формулу, вы получите размерность для удельного сопротивления Ом∙м2/м или просто Ом∙м. Практически в таких единицах измерять удельное сопротивление страшно неудобно, т. к. для металлов величина получается крайне маленькой — представляете сопротивление куба меди с ребром в 1 м?! На практике часто употребляют единицу в 100 раз больше: Ом∙см. Эта величина часто приводится в справочниках, но и она не слишком удобна для практических расчетов. Так как диаметр проводников измеряют обычно в миллиметрах (а сечение, соответственно, в квадратных миллиметрах), то на практике наиболее удобна старинная внесистемная единица Ом∙мм2/м, которая равна сопротивлению проводника сечением в 1 квадратный миллиметр и длиной 1 метр. Для того чтобы выразить «официальный» Ом∙м в этих единицах, нужно умножить его величину на 106, а для Ом∙см — на 104. Посмотрев в справочнике величину удельного сопротивления меди (0,0175 Ом∙мм2/м при 20 °C), мы легко можем вычислить, что сопротивление проводника с параметрами, приведенными на рис. 1.1, составляет около 45 Ом (проверьте!).
Заметки на полях
Надо сказать, что человечество весьма преуспело в изготовлении специальных материалов, имеющих коэффициент удельного сопротивления, мало зависящий от температуры. Это, прежде всего, специальные сплавы, константан и манганин, температурный коэффициент сопротивления (ТКС) которых в несколько сотен раз меньше, чем у чистых металлов. А для обычных стандартных углеродистых или металлопленочных резисторов ТКС составляет приблизительно 0,1 % на градус или меньше, т. е. примерно в 4 раза лучше, чем у меди. Есть и специальные прецизионные резисторы (среди отечественных это, например, С2-14, С2-29В, С5-61, проволочные С5-54В и др.), у которых этот коэффициент значительно меньше. Есть и другие материалы, у которых температурный коэффициент, наоборот, весьма велик (несколько процентов на градус, и при этом, в отличие от металлов, отрицателен) — из них делают т. н. термисторы, которые применяют в качестве чувствительных датчиков температуры. Для точного измерения температуры тем не менее используют чистые металлы — чаще всего платину и медь.
Схема с двумя резисторами
Познакомившись с понятием сопротивления и его особенностями, вспомним. Для чего мы все это делали. Ах, да, мы же хотели понять, как практически представить зависимость напряжения от тока! Но ведь мы пока не умеем произвольно изменять ток в проводнике, так? Напряжение изменять просто— нужно взять регулируемый источник питания, как это изображено на рис. 1.1, или, на худой конец, набор батареек, при последовательном соединении которых (1, 2, 3 и более штук) мы получим некий набор напряжений. А вот источников тока (именно тока, а не напряжения) мы еще не имеем. Как же быть?
Выход из этой ситуации показан на рис. 1.3 (заметьте, мы от схематического изображения проводника из длинной проволоки, имеющей некое сопротивление, перешли к стандартному обозначению резисторов, как это делается в настоящих электрических схемах, см. Приложение 1).
Рис. 1.3. Схема для изучения свойств цепи с двумя резисторами
Здесь нам уже не нужен регулируемый источник питания. Питается схема от батареи из трех гальванических элементов, например, типа D, соединенных последовательно (или одной типа 3336, см. Приложение 2). Каждый такой элемент (если он еще не был в эксплуатации) дает напряжение примерно 1,6 В, так что суммарное напряжение будет почти 5 В, как и указано на схеме (под нагрузкой и по мере истощения элементов напряжение немного упадет, но ошибка в данном случае не играет большой роли).
Как работает эта схема? Допустим, что движок переменного резистора R1 выведен в крайнее правое (по схеме) положение. Проследим путь тока от плюсового вывода батареи—амперметр, вывод движка резистора R1, крайний правый вывод R1, резистор R2, минусовой вывод батареи. Получается, что резистор R1 в схеме как бы не участвует, поскольку ток от плюсового вывода батареи сразу попадает на R2 (амперметр можно не принимать во внимание — далее мы узнаем, почему это так) и схема становится фактически такой же, как на рис. 1.1. Что покажут наши измерительные приборы? Вольтметр покажет напряжение батареи — 5 В, а показания амперметра легко вычислить по закону Ома: ток в цепи составит 5 В/50 Ом = 0,1 А или 100 мА (напомним еще раз, что это значение приблизительное, т. к. напряжение батареи несколько меньше 5 В).
Теперь поставим движок R1 в среднее положение. Ток в цепи теперь пойдет от плюса батареи через амперметр, вывод движка R1, половину резистора R1, резистор R2 и далее, как и раньше, вернется к минусу батареи. Как изменятся показания приборов? Раньше резистор R1 в деле не участвовал, а теперь участвует, хоть и половинкой. Соответственно, общее сопротивление цепи станет уже не 50 Ом (один резистор R2), а 50 (R2) + 50 (половинка R1), т. е. 100 Ом. Амперметр покажет уже не 100 мА, а 5 В/100 Ом = 0,05 А или 50 мА— в два раза меньше. А вот что покажет вольтметр? Так сразу и не скажешь, не правда ли? Придется считать, для этого рассмотрим отдельно участок цепи, состоящий из R2 с присоединенным к нему вольтметром. Очевидно, что току у нас деться некуда — все то количество заряда, которое вышло из плюсового вывода батареи, пройдет через амперметр, через половинку R1, через R2 и вернется обратно в батарею. Значит, и на этом отдельном участке, состоящем из одного R2, ток будет равен тому, что показывает амперметр, т. е. 50 мА. Получается, как будто резистор R2 подключен к источнику тока!
Замечание
На самом деле это не совсем точно — часть тока, хотя и очень небольшая, все же пойдет через вольтметр, минуя R2. Но на практике, особенно для современных вольтметров, этим всегда пренебрегают (см. далее).
И это действительно так — источник напряжения с последовательно включенным резистором (в данном случае это половинка R1) представляет собой источник тока (хотя и плохой). Так каковы же будут показания вольтметра? Очень просто: из закона Ома следует, что U = I∙R где R — сопротивление нужного нам участка цепи, т. е. R2, и в данном случае вольтметр покажет 0,05 50 = 2,5 В. Эта величина называется падением напряжения, в данном случае — падением напряжения на резисторе R2. Легко догадаться, даже не подключая вольтметр, что падение напряжения на резисторе R1 будет равно тоже 2,5 В, причем его можно вычислить двумя путями: как разницу между 5 В от батареи и падением на R2 (2,5 В), или по закону Ома, аналогично расчету для R2.
Замечание
И это не совсем точно — амперметр тоже имеет некоторое сопротивление и может быть представлен в виде еще одного последовательного резистора. Но, как и в случае вольтметра, этим на практике пренебрегают.
А что будет, если вывести движок переменника в крайнее левое положение? Я сразу приведу результат: амперметр покажет 33 мА, а вольтметр — 1,66 В. Пожалуйста, проверьте это самостоятельно! Если вы получите те же значения, то это будет означать, что вы усвоили закон Ома и теперь умеете отличать ток от напряжения.
Источники напряжения и тока
В схеме на рис. 1.3 мы можем выделить, как показано пунктиром, ее часть, включив туда батарейку и переменный резистор R1. Тогда этот резистор (вместе с сопротивлением амперметра, конечно) можно рассматривать, как внутреннее сопротивление источника электрической энергии, каковым выделенная часть схемы станет для нагрузки, роль которой будет играть R2. Любой источник, как легко догадаться, имеет свое внутреннее сопротивление (электронщики часто употребляют выражение «выходное сопротивление») — хотя бы потому, что у него внутри есть провода определенной толщины.
Но на самом деле не провода служат ограничивающим фактором. В главе 2 мы узнаем, что такое мощность в строгом значении этого понятия, а пока, опираясь на интуицию, можно сообразить: чем мощнее источник, тем меньше у него должно быть свое внутреннее сопротивление, иначе все напряжение «сядет» на этом сопротивлении, и на долю нагрузки ничего не достанется. На практике так и происходит. Если вы попытаетесь запустить от набора батареек типа АА какой-нибудь энергоемкий прибор, питающийся от источника с низким напряжением (вроде настольного сканера или ноутбука), то устройство, конечно, не заработает, хотя формально напряжения должно хватать, — напряжение уменьшится почти до нуля. А вот от автомобильного аккумулятора, который гораздо мощнее, все получится, как надо.
Такой источник, у которого внутреннее сопротивление мало по отношению к нагрузке, называют еще идеальным источником напряжения (физики предпочитают название идеальный источник ЭДС, т. е. «электродвижущей силы», на практике, однако, это абстрактное понятие встречается реже, чем менее строгое, но всем понятное «напряжение»). К ним относятся, в первую очередь, все источники питания: от батареек до промышленной сети.
Наоборот, идеальный источник тока, как нетрудно догадаться, обязан обладать бесконечным внутренним сопротивлением — только тогда ток в цепи совсем не будет зависеть от нагрузки. Понять, как источник реального тока (не бесконечно малого) может обладать бесконечным выходным сопротивлением, довольно трудно, и в быту таких источников вы не встретите. Однако уже обычный резистор, включенный последовательно с источником напряжения (не тока!), как R1 на рис. 1.3, при условии, что сопротивление нагрузки мало (R2 << R1), может служить хорошей моделью источника тока. Еще ближе к идеалу транзисторы в определенном включении, и мы с этим разберемся позднее.
Источники напряжения и тока обозначаются на схемах так, как показано на рис. 1.4, а и б. Не перепутайте, логики в этих обозначениях немного, но так уж принято. А эквивалентные схемы (их еще называют схемами замещения) реальных источников приведены на рис. 1.4, в и г, где RB обозначает внутреннее сопротивление источника. Как можно использовать эти эквивалентные схемы при анализе реальных цепей? Для этого нужно окончательно разобраться, как рассчитываются схемы с параллельным и последовательным включением резисторов.
Рис. 1.4. Источники тока и напряжения:
а — обозначение идеального источника напряжения; б — обозначение идеального источника тока; в — эквивалентная схема реального источника напряжения; г — эквивалентная схема реального источника тока
Параллельное и последовательное соединение резисторов и расчет схем
Схемы постоянного тока любой степени сложности всегда можно представить как совокупность резисторов и идеальных источников напряжения и тока. Для их расчета достаточно знать два очень простых закона, названных по имени физика XIX столетия Густава Роберта Кирхгофа (1824–1887).
Первый закон Кирхгофа формулируется так: алгебраическая сумма токов в любом узле электрической цепи равна нулю. Или еще проще: сумма токов, направленных к данному узлу, равна сумме токов, направленных от него.
По сути он представляет одну из форм физических законов сохранения — ведь заряды не могут возникнуть из ничего, соответственно, сколько прибыло зарядов в некую точку, столько из нее обязано уйти.
Второй закон Кирхгофа гласит: алгебраическая сумма падений напряжения вдоль любого замкнутого контура электрической цепи равна нулю. Его легко проиллюстрировать на примере нашей схемы рис. 1.3 — там сумма падений напряжений на всех резисторах (включая внутреннее сопротивление батарейки, сопротивление амперметра, которым мы пренебрегали, и т. д.) равна напряжению батарейки. Иначе и быть не может— куда оно, напряжение батарейки, тогда денется?
Из законов Кирхгофа вытекают очень часто применяющиеся на практике правила последовательного и параллельного соединения резисторов: при последовательном соединении складываются сопротивления резисторов, а при параллельном складываются их проводимости, которые по определению, данному ранее, есть величины, обратные сопротивлению (рис. 1.5). Понять, почему правила именно таковы, можно, если рассмотреть течение токов в обоих случаях.
Рис. 1.5. Последовательное и параллельное соединение резисторов
• При последовательном соединении ток I через резисторы один и тот же, поэтому падения напряжения на них складываются (U = U1 + U2), что равносильно сложению сопротивлений.
• При параллельном соединении, наоборот, равны падения напряжений U, а складывать приходится токи (I = I1 + I2), что равносильно сложению проводимостей. Если вы не поняли сказанное, то посидите над рис. 1.5 с карандашом и бумагой и выведите выражения закона Ома для каждого из резисторов — и все станет на свои места.
Из этих определений вытекает также несколько практических правил, которые полезно заучить:
• При последовательном соединении:
— сумма двух резисторов имеет сопротивление всегда больше, чем сопротивление резистора с большим номиналом (правило «больше большего»);
— если номиналы резисторов равны, то суммарное сопротивление окажется вдвое больше каждого номинала;
— если номиналы резисторов различаются во много раз, то общее сопротивление примерно равно большему номиналу. Типичный случай: в примере на рис. 1.3 мы игнорируем сопротивления проводов и амперметра, т. к. они много меньше сопротивлений резисторов.
• При параллельном соединении:
— сумма двух резисторов имеет сопротивление всегда меньше, чем сопротивление резистора с меньшим номиналом (правило «меньше меньшего»);
— если номиналы резисторов равны, то суммарное сопротивление будет вдвое меньше каждого номинала;
— если номиналы резисторов различаются во много раз, то общее сопротивление примерно равно меньшему номиналу. Это также можно иллюстрировать на примере рис. 1.3, где мы игнорируем наличие вольтметра, включенного параллельно R2, т. к. его сопротивление намного больше сопротивления резистора.
Знание этих правил поможет вам быстро оценивать схему, не занимаясь алгебраическими упражнениями и не прибегая к помощи калькулятора. Даже если соотношение сопротивлений не попадает под перечисленные случаи, результат все равно можно оценить «на глаз» с достаточной точностью. При параллельном соединении, которое представляет большую сложность при расчетах, для такой оценки нужно прикинуть, какую долю меньшее сопротивление составляет от их арифметической суммы — именно во столько раз приблизительно снизится их общее сопротивление по отношению к меньшему.
Проверить это легко: рассмотрим ситуацию, когда сопротивления равны. В этом случае одно сопротивление составляет 1/2 часть их суммы, т. е. общее сопротивление должно снизиться вдвое, как и есть на самом деле. Возьмем более сложный случай: одно сопротивление пусть имеет номинал 3,3 кОм, второе — 6,8 кОм. В соответствии с изложенным мы будем ожидать, что общее сопротивление должно быть на 30 % меньше, чем 3,3 кОм, т. е. 2,2 кОм (3,3 составляет примерно одну треть от суммы 3,3+6,8, т. е. общее сопротивление должно быть меньше, чем 3,3, на треть от этого значения, равную 1,1 — в результате и получаем 2,2 кОм). Если мы проверим результат, полученный такой прикидкой в уме, точным расчетом, то мы получим в результате 2,22 кОм, что очень неплохо.
В большинстве случаев нам такой точности и не потребуется — помните, что и сами сопротивления имеют разброс по номиналу, и для обычных схем допуски на номиналы стандартных компонентов могут быть довольно значительными (по крайней мере, в правильно составленных схемах). Если же схема в некоторых случаях должна все же иметь какие-то строго определенные параметры, то с помощью стандартных компонентов вы все равно этого не добьетесь, т. к. параметры, образно выражаясь, будут «гулять» (в пределах допусков, естественно) от дуновения ветерка из форточки. В таких случаях надо применять прецизионные резисторы и конденсаторы, а во времязадающих цепях использовать кварцевые резонаторы. Но составлять схему так, чтобы она теряла работоспособность от замены резистора 1 кОм на 1,1 кОм— не наш метод!
Теперь понятно для чего служат эквивалентные схемы: вы просто включаете внутренние сопротивления в вашу цепь и учитываете их при расчетах, как будто они там специально поставлены. Отметим, что с помощью эквивалентных схем можно представить в принципе любой радиоэлектронный компонент — иногда это очень удобно.
Вольтметр и амперметр в измеряемой цепи
Теперь нам несложно понять, какое поведение ожидается от амперметра и вольтметра. Амперметр всегда включается в измеряемую цепь последовательно, ведь через него должен проходить тот же ток, что и во всей цепи. Но если он будет иметь большое собственное сопротивление, то внесет существенную погрешность, тогда на нем будет падать заметная часть напряжения, это уменьшит падение напряжения на остальных резисторах и суммарный ток.
По сути реальный амперметр является, как это не парадоксально, вольтметром — он измеряет падение напряжения на его собственном внутреннем сопротивлении, меняя значение которого (устанавливая т. н. шунты — специальные резисторы), вы переключаете диапазоны измерения. Потому сделать его сопротивление равным нулю не получается, но удается сделать значение это достаточно малым, чтобы позволить себе пренебречь его влиянием.
Заметки на полях
Вот это-то замечательное свойство современных амперметров одновременно и является их самым слабым местом: достаточно перепутать и включить амперметр не последовательно, а параллельно источнику питания (подобно вольтметру), как через него, в полном соответствии с законом Ома, потечет огромный ток, ограниченный только возможностями источника. Действительно, типичное сопротивление амперметра составляет порядка нескольких миллиом, что даже при 5-вольтовом источнике дает токи в 1000 А и более! На самом деле никакой нормальный источник питания (включая даже бытовую электросеть) такого тока отдать не сможет, но того, что сможет, будет достаточно, чтобы прибор сгорел. Однако не отчаивайтесь — обычно в хороших мультиметрах внутри стоит плавкий предохранитель, а в самых качественных — даже самовосстанавливающийся. Если ваш прибор вдруг перестал показывать ток (а вы можете и не заметить, как случайно подсоединили его в режиме измерения тока к выводам питания), то прежде всего разберите его и проверьте этот самый предохранитель. Кстати, именно для того, чтобы дополнительно защитить мультиметр от описанных неприятностей, клемму для подключения щупа в режиме измерения тока всегда делают отдельно.
Наоборот, вольтметр подключается всегда параллельно, и потому, чтобы не вносить погрешности, должен иметь как можно большее сопротивление. По сути аналоговый вольтметр является амперметром, измеряя тот мизерный ток, который ответвляется из внешней цепи на это большое сопротивление. Однако это относится только к традиционным стрелочным приборам — современные вольтметры, построенные на интегральных схемах, ток от измеряемой цепи практически не потребляют, и потому много ближе к идеалу, чем амперметры. Это касается не только приборов, измеряющих напряжение (например, мультиметров в режиме измерения напряжения — рис. 1.6), но и других устройств, которые со стороны схемы выглядят, как вольтметры, например, осциллографов, различных аналогово-цифровых преобразователей и т. п.
Рис. 1.6. Современный мультиметр
Из-за этих свойств испортить мультиметр в режиме вольтметра гораздо труднее— если вы его по ошибке включите последовательно, то перестанет работать схема, а не прибор. Однако теоретически сжечь можно и вольтметр, если его включить на предел в 0,2 В, а подсоединить к сети 220 В. Поэтому, если вы не располагаете прибором с автоматическим выбором предела измерения, будьте внимательны, соблюдая и тип измеряемого напряжения (постоянное или переменное), и его возможный предел. На самом деле современные мультиметры обычно выдерживают многократное превышение предельного значения (например, 250 В на установленном пределе 2 В), но когда вы не знаете заранее, каково может быть напряжение в измеряемой точке, то начинать все же надо всегда с самого большого значения и постепенно его снижать.