Глава 5 Изготовление радиолюбительских конструкций

Как любила повторять моя мама, если хочешь, чтобы что-то было сделано хорошо, сделай это сам.

Дик Френсис «Движущая сила»

Есть такой эмпирический закон, известный под названием «закона Мэрфи», который имеет множество формулировок, но основная мысль, содержащаяся в нем, такова: «всегда полагайтесь на худший из возможных исходов». В моей практике этот закон не нарушался никогда: например, если некий прибор сломался, то обязательно следует предполагать, что поломка произошла как минимум в двух местах. И это невероятное предположение, противоречащее основным положениям теории надежности, обычно подтверждается на практике!

Наверное, вы хотите, чтобы ваши конструкции работали долго. Тогда имейте в виду, что в радиоэлектронике в полной мере оправдывается правило, которое заметили еще авиаконструкторы: красивый самолет имеет и лучшие летные качества. Аккуратно и эстетично смонтированный прибор будет работать лучше и надежнее — этому можно, кстати, отыскать вполне рациональные объяснения. Если, например, у вас соединительные провода между блоками имеют произвольную длину и толщину и кое-как запиханы в корпус прибора, напоминая мочалку для мытья посуды, то велика вероятность того, что вы зацепите тот или иной провод при сборке, и он просто оторвется, а если он слишком толстый и жесткий, то и цеплять не надо — пайка отломится при малейшей попытке отогнуть провод в сторону. Наоборот, слишком тонкий и мягкий провод будет цепляться за все подряд и обязательно попадет под крепежные винты.

Ни в коем случае не берите за образец сборку персональных компьютеров — там совершенно другая технологическая база, и спроектировано все настолько надежно, что хаотичное расположение кабелей в корпусе уже не может помешать работоспособности (хотя в фирменно собранных ПК кабели все же убирают в аккуратные жгуты). «На коленке» такого не достичь, потому берите лучше пример с отечественной военной сборки, которая технологически немногим отличалась от «наколеночной», но, тем не менее, довольно надежно работала.

Радиолюбителю недоступны не только многослойные печатные платы, но часто даже обычные платы с металлизированными отверстиями. Однако если все сделано аккуратно и с соблюдением элементарных технологических правил, то ручная сборка ничуть не менее надежна, чем автоматизированная. Конечно, такой миниатюризации, когда в корпус мобильника вмещают процессор с чипсетом, высокочастотную приемную часть, память, контроллер дисплея и т. п. ручной сборкой достичь не удастся. И не надо к этому стремиться — применяйте более удобные для ручной пайки корпуса микросхем типа DIP (с выводами вниз, а не в плоскости самой микросхемы, см. рис. 12.1 в главе 12) и обычные резисторы и конденсаторы, с гибкими выводами, а не для поверхностного монтажа. Тогда все будет работать очень надежно.

Заметки на полях

Иногда микросхемы удобно ставить на панельки — не только дорогие, вроде микроконтроллеров или памяти, но даже и обычную логику. Это упрощает монтаж и позволит легко заменять их при необходимости. Следует только иметь в виду, что отечественные микросхемы в корпусах DIP выпускаются с шагом 2,5 мм, а импортные — 2,54 мм. Для выбора панелек это некритично, если число выводов в одном ряду не больше 16 — тогда они фактически взаимозаменяемы, в противном случае отечественные микросхемы могут не влезть в импортные панельки и наоборот. Для фирменных плат с металлизацией величина шага между выводами начинает сказываться уже для корпусов с четырьмя выводами в одном ряду. То же, кстати, относится и к некоторым другим компонентам, таким как клеммники, которые при внешней тождественности могут быть с шагом 5 или 5,08 мм. Если вы наберете ряд клеммников уже из трех-пяти штук, то при ошибке в раскладке они в плату не встанут.

Платы и пайка

Все схемы в настоящее время располагают на печатных платах. Название «печатные» произошло от того, что промышленные платы изготавливаются методом фотопечати. Однозначно следует отдавать ваши платы в промышленное изготовление, если вы делаете несколько экземпляров (чем больше, тем получится дешевле в расчете на один экземпляр) хорошо отработанного и обкатанного на макете устройства, так вы сильно экономите на последующей отладке, сборке, и, к тому же, надежность полученного устройства заметно выше и меньше зависит от квалификации монтажника. А если вы изготавливаете ваше изделие в одном экземпляре, то чаще всего затевать подобную историю экономически нецелесообразно: времени уйдет масса, а стоимость раскладки и изготовления одной платы средних размеров даже в самых дешевых мастерских может составить сотни «вечнозеленых». Быстрее и дешевле аккуратно собрать схему на универсальной макетной плате, хотя это и приводит к значительной трате времени на монтаж и его проверку.

Изготовление плат

Существует немало описанных в литературе способов изготовления печатных плат в домашних условиях (достаточно поковыряться в старых подшивках журнала «Радио»). Вот один из самых простых.

Подготовьте рисунок проводников в натуральную величину — бумажный шаблон с четко обозначенными центрами отверстий. Раньше такие шаблоны приходилось рисовать карандашом на миллиметровке, теперь, располагая компьютером и принтером, можно сделать все гораздо аккуратнее и точнее. Вырежьте ножницами по металлу заготовку платы из фольгированного стеклотекстолита, соблюдая точные габаритные размеры. Затем плотно по всей поверхности наклейте на заготовку шаблон, используя простой резиновый клей — это позволит потом легко удалить бумагу и остатки клея с заготовки. Аккуратно накерните отверстия по шаблону, затем шаблон можно удалить.

Положите заготовку шаблоном вверх на деревянное основание, которое не жалко испортить, и закрепите ее струбцинкой. Чем плотнее заготовка прижмется к основанию, тем лучше. Затем микродрелью просверлите отверстия в помеченных местах, выбирая сверла соответствующего диаметра (для выводов большинства обычных компонентов — резисторов, диодов, маломощных транзисторов, микросхем — подойдет сверло 0,6–0,7 мм, остальные измерьте штангенциркулем и накиньте 0,1 мм). Учтите, что сверла на стеклотекстолите довольно быстро тупятся и приходят в негодность, потому следует иметь их запас. После сверления необходимо осторожно (чтобы не расширять отверстия) обработать края отверстий сверлом большего диаметра или зенковкой, чтобы убрать заусенцы. Наконец, обработайте поверхность с обеих сторон платы сначала обычной шкуркой, а затем нулевкой до зеркального блеска. На этом первый этап работы можно считать законченным.

Затем тщательно очистите рабочий стол и заготовку от стружек и пыли и обработайте с обеих сторон поверхность заготовки тампоном из хлопчатобумажной ткани (но не ваты!), смоченным бензином «Галоша». В дальнейшем старайтесь не касаться пальцами поверхности медного слоя, а берите заготовку пинцетом или, как компьютерный лазерный диск, за края.

Теперь вам понадобится водостойкий фломастер с тонким стержнем (не более 1 мм). Лучше, если фломастер новый — линия, проведенная даже очень быстро, не должна прерываться. Проверьте его водостойкость, иначе вся работа может пойти насмарку (высохшая линия на бумаге при проведении по ней мокрым пальцем не должна иметь даже следов смазывания). К сожалению, все бытовые фломастеры теперь делаются на спирту, и это значительно снижает их водостойкость по сравнению с якобы вредными для здоровья старыми фломастерами на других органических растворителях бензоле и толуоле.

Этим фломастером следует сначала аккуратно обвести отверстия с обеих сторон платы, формируя контактные площадки. Они не должны быть слишком большими, иметь разрывы или непрокрашенные места. Потом только останется соединить эти площадки в соответствии с рисунком проводников (не забывайте, что вторая сторона выглядит зеркально по отношению к первой). Рисуя дорожки, не старайтесь их делать узкими, если место позволяет — лучше провести рядом несколько линий, сливающихся в одну, или использовать более толстый фломастер. И в любом случае следует шины питания, и особенно общего провода («земли»), делать как можно шире и стараться, чтобы питание проходило по одной стороне платы, а общий провод — по другой. Неплохо также распространить «землю» на свободную поверхность платы, где это возможно. Для некоторых аналоговых схем даже делают так: лицевую сторону платы (где расположены компоненты) оставляют целиком фольгированной, кроме протравленных мест под сквозные отверстия для выводов (это удобно делать зенковкой по готовой плате), и соединяют эту сторону с «землей», а остальные проводники располагают на другой стороне.

При изготовлении с помощью принтеров делается сначала все то же самое, кроме способа формирования изображения дорожек. Самое простое — напечатать изображение на поверхности слоя медной фольги с помощью принтера, имеющего прямой тракт подачи носителя, без перегибов. Однако обычные струйные принтеры для этой цели не годятся, так как чернила у них водорастворимые. Теоретически можно применить технологии термопереноса (а там и до литографии недалеко, правда?), однако все они очень дороги в смысле стоимости оборудования, и дешевле будет заказать обычную плату, потому что она тогда заодно получится с металлизированными отверстиями, недоступными в домашних условиях никаким технологиям.

Наибольшее распространение среди радиолюбителей получила технология с использованием обычных лазерных принтеров. При этом рисунок платы печатается в зеркальном изображении на каком-либо носителе, а затем переносится на плату с помощью горячего утюга (разумеется, тогда отверстия сверлятся после нанесения рисунка, а не до — оставьте маленькие просветы в центре рисунка каждой контактной площадки). Лучше взять утюг без отпаривателей, например, старый отечественный. Носителем может быть мелованная глянцевая бумага (обложки от журналов), специальная тонкая принтерная бумага, прозрачная пленка (тоже специальная принтерная, обычная полиэфирная расплавится), алюминиевая фольга и др. Самое главное при этом — точно подобрать температуру утюга, чтобы тонер на основе расплавился и прилип к плате, но не растекся. Затем после остывания (лучше под грузом) основу удаляют. Обычную бумагу можно просто размочить в воде, а алюминиевую пленку вообще можно не удалять, т. к. она растворяется в травильном растворе, удалить надо только основу, на которую она была наклеена (без основы напечатать на ней ничего не удастся). Интересно, что при таком способе нанесения изображения узкие дорожки получаются лучше широких, правда, при печати на мелованной бумаге у них могут в итоге получаться «лохматые» края.

Нарисовав тем или иным способом проводники с обеих сторон, оставьте заготовку окончательно подсохнуть и подготовьте травильную ванну. Для этого лучше всего подходит фотографическая пластмассовая кювета. Ни в коем случае не металлическая! Из множества известных рецептов для травления меди в радиолюбительской практике лучшие результаты дает концентрированный раствор хлорного железа, который не выделяет в процессе работы газов и потому не повреждает рисунок фломастера. Он продается на рынках и радиолюбительских магазинах вроде «Чипа-Дипа», и его можно использовать многократно, только при хранении следует его плотно закрывать. Учтите, что все травильные растворы весьма агрессивно относятся к металлам и даже к не слишком качественной эмали на сантехнических приборах, поэтому нужно соблюдать предельную осторожность, чтобы не испортить раковину или ванну.

Окуните плату в подготовленный раствор. Работать лучше в резиновых перчатках, а манипулировать платой с помощью пинцета из пластмассы или нержавеющей стали, с гладкими губками (типа фотографического). Имейте в виду, что лимитирующая стадия процесса травления в хлорном железе — отвод продуктов травления от поверхности платы, поэтому в состоянии покоя плата снизу будет травиться гораздо быстрее, чем сверху, т. к. продукты реакции оседают на дно. Кювету нужно непрерывно покачивать и как можно чаще переворачивать плату, иначе могут остаться непротравленные участки, в то время как в других местах уже начнется процесс подтравливания дорожек. Важнее всего не пропустить момент, когда вся медь на непрокрашенных участках уже сошла. Если вы оставите плату на более долгий срок, считайте, что все испортили, т. к. краска долго не выдержит, и дорожки начнут протравливаться. Лучше всего в конце процесса периодически промывать плату в проточной воде и рассматривать ее на просвет.

После травления плату нужно тщательно промыть теплой водой, высушить и оставшуюся краску тщательно смыть ацетоном, меняя тампоны до удаления малейших следов фломастера. Наконец, все дорожки необходимо облудить. Для этого берется мощный паяльник (200 Вт), а плата целиком покрывается активным флюсом. При облуживании следует всего лишь легко касаться дорожек, чтобы долго их не прогревать, иначе они могут отслоиться. Затем плата еще раз промывается водой, высушивается и покрывается канифольным лаком, — теперь она готова к монтажу.

Пайка

Паяльник для пайки компонентов должен быть небольшой мощности (20–30 Вт), с тонким жалом, достаточно хорошо заточен и облужен, не перегреваться, но и не быть слишком холодным. Обязательно «красьте» канифольным флюсом всю плату, а не только места пайки. Для пайки удобен тонкий припой с канифолью внутри (слишком много канифоли не бывает!) — вы утыкаете одной рукой такую проволочку в место пайки, а другой прислоняете к этому месту кончик жала паяльника. Секунда — и пайка готова. Канифоль потом можно отмыть спиртом или спиртобензиновой смесью (не откладывайте этот процесс надолго, поскольку засохший канифольный лак удаляется значительно труднее). Однако в конструкциях «для себя» можно канифоль вообще не удалять, т. к. лак будет служить дополнительной изоляцией, помогать при доделках (которые неизбежны) и уменьшится риск засорить при промывке такие компоненты, как переменные резисторы.

После пайки выводы откусывают на требуемую длину: для промышленных плат с металлизированными отверстиями достаточно, чтобы места пайки выступали на 1 мм над поверхностью платы, для «доморощенных» необходимо оставлять несколько больше. Для плат собственного изготовления нужно не забывать, что сквозные отверстия не имеют металлизации и их следует пропаивать на обеих сторонах платы.

Не исключено, что вам попадутся отечественные или импортные детали, изготовленные давно, в первую очередь, это относится к сопротивлениям типа MЛT, к некоторым типам конденсаторов и других компонентов. Я не знаю, какие материалы были тогда использованы, но выводы этих деталей при хранении чернеют (т. е. покрываются тонкой темной пленкой соединений типа сульфидов), и их пайка представляет определенные трудности. Такие компоненты вполне пригодны, только выводы нужно обработать: зачистить тонкой Шкуркой-нулевкой, а затем облудить со всех сторон, стараясь не наносить лишнего припоя (иначе вывод может не влезть в предназначенное для него отверстие). Точно так же следует предварительно залуживать любые медные проводники, не покрытые припоем.

Заметки на полях

Снять лак с обмоточных проводов типа ПЭВ-2 и аналогичных можно шкуркой (только не резаком и не скальпелем, потому что зачистка будет некачественная, а кончик провода потом легко обламывается), или обжигом кончиков провода на зажигалке с последующим залуживанием с помощью активного флюса, вроде того, что описан далее. Но для ускорения процесса и получения стабильного результата до сей поры ничего лучше не придумано, чем старинный способ с использованием таблеток аспирина (ацетилсалициловой кислоты). Они легко плавятся паяльником, выделяя компоненты, которые размягчают лак и позволяют его счистить прямо кончиком паяльника с одновременным облуживанием.

В качестве активного флюса для облуживания дорожек, окислившихся выводов деталей, поверхностей из стали, грязной меди, латуни или, скажем, нихрома, удобно применять совершенно другую композицию. Из имеющихся в продаже можно рекомендовать «Паяльную кислоту» на основе хлористого цинка или «ХАФ» на основе хлористого аммония — оба они смываются водой.

Заметки на полях

Автор же вот уже в течение трех с лишним десятков лет использует самостоятельно приготовляемый активный флюс, который дает отличные результаты даже для нержавеющих сталей (для пайки которых обычно рекомендуют ортофосфорную кислоту). Приготавливается он следующим образом: нужно засыпать в пузырек примерно на одну треть его высоты порошок хлористого аммония и залить доверху смесью, состоящей из 70 % глицерина и 30 % воды. Взболтать эту смесь и оставить на одну-две недели. Если хлористый аммоний по истечении этого срока полностью растворится — досыпать еще, если нет — осадок не помешает. Насыщенным раствором удобно заполнить одноразовый шприц или полиэтиленовую пипетку с завинчивающейся крышечкой (например, от лекарства, которое закапывается в нос при гриппе). После применения остатки такого флюса обязательно смыть теплой водой под краном или стереть мокрой тряпочкой и тщательно высушить место пайки. Флюс совершенно нейтрален, не ядовит, безопасен для рук и не разъедает дерево, но чрезвычайно текуч и очень медленно испаряется, поэтому его остатки со стола и с других предметов следует тщательно удалять влажной тряпкой. Не следует употреблять его совместно с канифолью — они друг другу будут мешать и смывать остатки при этом гораздо труднее.

И еще один совет, который относится к распайке компонентов на платах промышленного изготовления. Дело в том, что в процессе производства контактные площадки и дорожки покрываются сплавами (типа «Розе»), имеющими очень низкую температуру плавления. Поэтому, припаивая к ним вывод некоего компонента, не следует удерживать этот вывод на весу трясущейся рукой с пинцетом — припой застынет тогда, когда тонкий слой сплава на поверхности дорожки еще будет жидким, и очень надежное по внешнем) виду паяное соединение на поверку окажется просто блямбой припоя, слегка прижатой к контакту на плате за счет упругости вывода.

Макетные платы

Иногда под макетными платами понимают довольно сложные устройства с множеством зажимов, где схему можно собирать без помощи паяльника. Такие конструкции имеются в продаже. Но обычно, говоря о макетной плате, имеют в виду просто печатную плату, на которой предусмотрены места для установки компонентов (отверстия и контактные площадки), не соединенные проводниками вовсе или соединенные по некоей специальной универсальной схеме. Такая плата пригодна не только для собственно макетирования, но и для изготовления отдельных изделий в единичных экземплярах, что нередко практикуют и профессионалы.

Простейший вариант макетной платы — поле из металлизированных отверстий с двусторонними контактными площадками с шагом 2,5 (или 2,54) мм между ними. Некоторые варианты рисунка макетных плат показаны на рис. 5.1. Не поленитесь приобрести подобные платы — они продаются на радиорынках и том же «Чипе-Дипе». В крайнем случае их следует заказать, хотя это и дорого. Учтите, что абсолютно универсальной платы, пригодной для расположения любых компонентов, не существует, и в большинстве случаев имеющиеся приходится дорабатывать.

Рис. 5.1. Фрагменты различных макетных плат

Соединения между выводами компонентов на такой плате осуществляются в процессе сборки схемы с помощью отрезков обычного изолированного провода — лучше всего для этой цели употреблять т. н. «луженку», под которой понимается тонкий (сечением не более 0,5 мм) одножильный медный провод, покрытый припоем, в разноцветной хлорвиниловой изоляции. Такой провод имеет один «капитальный» недостаток — хлорвиниловая изоляция легко плавится при нагревании и «скукоживается» при пайке, обнажая концы на недопустимую длину. К сожалению, одножильных проводов для подобного монтажа в термостойкой (фторопластовой) изоляции я не встречал, хотя они, наверное, существуют в природе. Поэтому на практике удобнее гибкий фторопластовый (тефлоновый) провод типа МГТФ, хотя монтаж с его помощью получается не столь надежным из-за его гибкости.

При монтаже не следует стараться провести проводники «красиво» (по прямым перпендикулярным линиям) — наоборот, качество и надежность схемы будет выше, если все соединения разведены по кратчайшему пути. Необходимо, чтобы провода были припаяны «внатяг», а не змеились по плате. Короткие соединения, например перемычки, удобно делать неизолированными обрезками выводов от резисторов и диодов. Заметим, что не следует припаивать выводы деталей, особенно провода для внешних соединений платы, просто к контактной площадке или дорожке — их по мере возможности нужно просовывать в предусмотренное отверстие. В любом случае желательно прикреплять жгут внешних проводов к плате хомутиком, а по мере возможности межплатные соединения выполнять плоскими кабелями с игольчатыми разъемами типа IDC (какие используются для подсоединения жестких дисков с IDE-интерфейсом в компьютерах). Кабельные части разъемов (розетки) выпускаются на любое четное число контактов и легко заделываются с помощью специального инструмента.

Немного о резисторах и конденсаторах

Промышленные резисторы имеют строго определенные значения сопротивлений из стандартных рядов, выбранных так, чтобы при заданном допуске (например, 10 %) границы возможных значений пересекались. Поэтому резисторы имеют такие «странные» номинальные значения: 3,9 или 5,1 кОм (а не естественные 4 и 5 кОм ровно). Современные резисторы маркируются цветным кодом, читать который — мука мученическая, учитывая особенно, что понятие, скажем, «золотистый» очень часто трактуется производителями весьма вольно, и отличить его от «оранжевого» или «желтого», к примеру, на темно-синем фоне, может только человек с большим опытом. Поэтому на практике проще и быстрее просто измерить сопротивление мультиметром.

В каждой декаде номиналы получаются из табличного ряда значений путем умножения на соответствующую степень десяти. Для маркировки резисторов, не помеченных цветным кодом (например, старинных МЛТ) часто используют условные обозначения для каждого диапазона: буква R (или Е) — обозначает омы, ккилоомы, м или Ммегомы. Эти буквы могут заменять десятичную точку: так, запись 1к2 есть то же самое, что и 1,2 кОм, a 3R3 (или 3ЕЗ) — то же самое, что 3,3 Ом. При обозначении на схемах омы в большинстве случаев вообще опускают, именно так мы будем поступать в этой книге, так что имейте в виду, что запись «360» на схеме означает просто 360 Ом.

ЧИП-резисторы для поверхностного монтажа маркируются по-другому: тремя цифрами, первые две из которых есть номинальное значение (без запятой!), а последняя справа — степень десяти. Так, надпись 103 означает 10∙103 = 10 000 Ом, т. е. 10 кОм, а надпись 272 — 2700 Ом, т. е. 2,7 кОм.

Аналогично маркируются конденсаторы (любые малогабаритные), только за основу шкалы там приняты пикофарады (10-12 Ф). Так что надпись 474, скажем, расшифровывается, как 47∙104∙10-12 = 0,47∙10-6 Ф или 0,47 мкФ. При обозначении на схемах единицу измерения (Ф) часто опускают, и пишут просто «мк» (мкФ), «н» или «п» (нФ), «п» или «р» (пФ). Пикофарады (подобно омам) могут вообще не указывать. Часто микрофарады обозначают просто лишним десятичным знаком (мы именно так и поступали в главе 4) — например, запись «100,0» означает 100 мкФ, в то время как просто «100» — это 100 пФ.

Корпуса

Проблема корпусов для радиоаппаратуры не стоит особенно остро — все крупные (и помельче) фирмы, торгующие компонентами, предлагают и различные корпуса. Беда тут примерно та же, что и с покупкой, скажем, обуви — вроде ее много на любой вкус и кошелек, да одни ботинки не смотрятся, в других кантик неподходящий, третьи цветом не вышли, четвертые в подъеме жмут… Короче, подобрать под конкретный прибор готовый корпус — задача весьма непростая. Потратив несколько десятков «баксов» на блестящее заморское изделие, очень не хочется браться за напильник, чтобы доводить его до ума, но приходится — здесь должно быть окно для индикатора, эту стенку вообще надо удалить, ибо тут будет стоять радиатор для мощного транзистора, тут требуются фигурные отверстия под разъемы… Тогда, спрашивается, зачем тратились? А если еще ошибешься, что нередко случается Даже с опытными слесарями?

В общем, есть простой способ изготовления корпусов в домашних условиях под конкретные нужды, причем если «руки на месте», то такие готовые изделия будут выглядеть практически не хуже фабричных. Заключается способ в том, что вы сначала рисуете эскизы всех стенок и перегородок, располагаете на экране компьютера (или просто карандашом на бумаге) все детали и платы, чтобы они не наезжали друг на друга, выверяете размеры (компьютер дает простор для такого рода творчества), а затем по готовым эскизам переносите размеры на фольгированный стеклотекстолит и вырезаете заготовки. Не забывайте давать припуски на толщину материала по нужным сторонам заготовок.

Лучше все отверстия сделать заранее, поскольку всегда удобнее работать с пластинкой, чем с готовой коробкой. Затем, прикладывая заготовки под прямым углом друг к другу, пропаиваете место стыка обычным припоем. Работать нужно самым мощным паяльником (200–400 Вт), припоем в прутках и водорастворимым активным флюсом. Сложность только одна, но существенная: припой сокращается в объеме при застывании, потому пластинки под прямым углом относительно друг друга надо прочно закреплять, иначе угол окажется совсем не прямым, а распаять будет уже очень трудно. Готовый корпус обтягивается самоклеящейся пленкой, например, под темное дерево. Если делать все аккуратно, получается классно!

Несколько замечаний по оформлению корпуса. Первое: если у вас в корпусе окно для индикаторов, то его надо делать из дымчатого, а не прозрачного пластика, а все, что за этим окном расположено, кроме, естественно, самих индикаторов (включая плату с компонентами), выкрасить в черный цвет из аэрозольного баллончика — это придаст опенок «фирменности» вашему изделию. Ужасно выглядят конструкции, в которых через стекло виднеются пайки на печатной плате. Можно к тому же заклеить всю незадействованную поверхность окна изнутри черной липкой лентой. Если следовать этому совету, то можно не выпиливать окна точно по размеру индикатора, что довольно сложно сделать красиво, а выполнить из дымчатого оргстекла, например, всю переднюю панель.

Второе замечание касается нанесения надписей на переднюю панель. Наилучший способ — заказать панель с лазерной гравировкой. Но это дорого и хлопотно, поэтому хочется сделать самому. Ручной способ отвергаем с порога — ничто не может выглядеть кошмарнее, чем надписи, сделанные вручную. Никакие трафареты и гравировальные машинки здесь помочь не могут. Это вообще была одна из самых тяжелых проблем до последнего времени и не только для радиолюбителей, даже мелкосерийные приборы на советских заводах выпускались с гравированными вручную надписями. И это было не слишком эстетично.

К счастью, в последние годы в связи со всеобщей доступностью струйных принтеров проблема качественной печати любым размером шрифта, любым цветом и на любом фоне решена полностью. Делается это на специальной основе, которая с одной стороны липкая и покрыта защитным слоем, как самоклеющаяся пленка, а с другой имеет особую пористую фактуру, хорошо удерживающую принтерные чернила. Она довольно дорогая, но десяти листочков вам хватит «на всю оставшуюся жизнь», если вы, конечно, не собираетесь налаживать крупносерийное производство. Если же такой пленки под рукой нет, то можно напечатать надписи просто на плотной мелованной бумаге (например, на обратной стороне обложки настенного календаря), а затем приклеить их двусторонним скотчем. Красивее всего, на мой взгляд, выглядят надписи, напечатанные с инверсией, т. е. белым цветом на черном фоне, только не забудьте закрасить белые горцы готовых к наклейке «лейблов» черным фломастером, иначе они будут очень бросаться в глаза.

Расчет радиаторов

Сразу скажем, что научно-обоснованной методики для расчета охлаждающих радиаторов не существует. По этому поводу можно написать не одну диссертацию или монографию (и написаны, и много), но стоит изменить конфигурацию охлаждающих ребер или стержней, расположить радиатор не вертикально, а горизонтально, приблизить к нему любую другую поверхность снизу, сверху или сбоку, как все изменится и иногда кардинально. Именно поэтому производители микропроцессоров или видеокарт предпочитают не рисковать, а снабжать свои изделия радиаторами с вентилятором — принудительный обдув, даже слабенький, повышает эффективность теплоотвода в десятки раз, хотя зачастую этого и не требуется. Последние модели компьютерных источников питания и материнских плат позволяют автоматически регулировать интенсивность обдува с целью снижения уровня шума, и некоторые такие конструкции вообще не запускают вентилятор, если процессор простаивает. В главе 6 мы поговорим о том, как самостоятельно изготовить такой регулятор.

В критичных случаях, для снижения габаритов очень мощного устройства, конечно, можно вместо пассивного радиатора пристроить к вашей конструкции процессорный «кулер» с вентилятором. Правда, на практике мне этого Делать никогда не приходилось, да и надежность конструкции снижается, т. к. за исправностью вентилятора приходится следить, а это неприемлемо Для устройств, которые предназначены для автономной работы в течение Длительного времени. Потому в радиолюбительских конструкциях мы обойдемся пассивными (без обдува) охлаждающими устройствами.

Здесь мы приведем только пару-другую эмпирических способов, которые оправдали себя на практике и годятся для того, чтобы рассчитывать именно пассивные радиаторы, устроенные примерно так, как показано на рис. 5.2.

Рис. 5.2. Типичный пластинчатый радиатор

Сначала рассмотрим, как рассчитывать площадь радиаторов, исходя из их геометрии. Для такого расчета нужно к площади основания прибавить суммарную площадь его ребер (также с каждой стороны). Если нижней стороной радиатор прижимается к плате, то лучше считать рабочей только одну сторону основания, но мы предположим, что радиатор «висит» в воздухе (как часто и бывает) и поэтому площадь основания удваивается: Sосн = 2∙L1L2. Площадь одного ребра (тоже с двух сторон) Sp = 2∙L1h, но к этой величине нужно еще прибавить боковые поверхности ребра, площадь которых равна Sбoк = 2∙hδ. В данном случае ребер всего 6, поэтому общая площадь радиатора S = Sосн + 6∙Sp + 6∙Sбок. Пусть L1 = 3 см, L2 = 5 см, h = 3 см, δ = 0,2 см, тогда общая площадь такого радиатора будет 145 см2. Разумеется, это приближенный расчет (мы не учли, скажем, боковую поверхность основания), но для наших целей точнее и не надо.

Вот два эмпирических способа для расчета рассеиваемой мощности в зависимости от площади поверхности, и пусть меня не слишком строго осудят за то, что никаких особенных научных выкладок вы здесь не увидите.

Способ первый и наипростейший: площадь охлаждающего радиатора должна составлять 10 см2 на каждый ватт выделяющейся мощности. Так что радиатор на рис. 5.2 с размерами, приведенными ранее, согласно этому правилу может рассеять 14,5 Вт мощности (как раз годится для простейшего источника питания, показанного на рис. 4.5, б или 4.6). И если позволяют размеры корпуса, то вполне можно ограничиться этим прикидочным расчетом.

Если же вы хотите подсчитать поточнее, то вот один из более сложных способов, который годится для пластинчатых радиаторов средних размеров (L1 = 20—180 мм, L2 = 40—125 мм).

Рис. 5.3. Эффективный коэффициент теплоотдачи ребристого радиатора в условиях свободной конвекции при различной длине ребра:

1 — h = 32 мм; 2 — h = 20 мм; 3 — h = 12,5 мм

Для оценки тепловой мощности радиатора можно использовать следующую зависимость: W = αэффθS,

где: W — мощность, рассеиваемая радиатором, Втαэфф — эффективный коэффициент теплоотдачи, Вт/м2 °C (см. график на рис. 5.3); θ — величина допустимого перегрева теплоотдающей поверхности, °Сθ = ТсТос (Тс — средняя температура поверхности радиатора, Тос — температура окружающей среды), S — полная площадь теплоотдающей поверхности радиатора, м2.

Обратите внимание, что площадь в эту формулу подставляется в квадратных метрах, а не сантиметрах.

Посчитаем мощность для радиатора, показанного на рис. 5.2 с размерами, приведенными ранее. Сначала зададимся желательным перегревом поверхности 0, выбрав не слишком большую величину, равную 30 °C. Можно полагать тогда, что при температуре окружающей среды 30°, температура поверхности радиатора составит 60°. Если учесть, что разница между температурами радиатора и кристалла транзистора или микросхемы при хорошем тепловом контакте (о котором далее) может составить примерно 5°, то это приемлемо практически Для всех полупроводниковых приборов.

Высота ребер h у нас составляет 30 мм, поэтому пользуемся верхней кривой на графике рис. 5.3, откуда определяем, что величина коэффициента теплоотдачи αэфф ~ 50 Вт/м2∙°С. После вычислений получим, что W = 22 Вт. Ранее по простейшему правилу мы получили 14,5 Вт. т. е. проведя более точные расчеты, мы можем раза в полтора уменьшить площадь радиатора, тем самым сэкономив место в корпусе. Однако, повторим, если габариты позволяют, то лучше всегда иметь запас.

Радиатор (и его ребра) следует располагать вертикально (как на рис. 5.2), а поверхность его желательно покрасить в черный цвет. Я еще раз хочу напомнить, что все эти расчеты очень приблизительны, и даже сама методика может измениться, если вы поставите радиатор не вертикально, а горизонтально или снабдите его игольчатыми ребрами вместо пластинчатых. К тому же мы никак не учитываем здесь тепловое сопротивление переходов «кристалл-корпус» и «корпус-радиатор» (просто предположив, что разница температур составит 5°). Указанные методы дают неплохое приближение к истине, но если мы не обеспечим хороший тепловой контакт, все наши расчеты могут пойти насмарку.

Просто плотно прижать винтом транзистор к радиатору, конечно, можно, но только в том случае, если поверхность радиатора в месте прижима идеально плоская и хорошо отшлифована. Практически этого никогда не бывает, поэтому радиатор в месте прижима смазывают специальной токопроводящей пастой. Ее можно купить в магазинах, а иногда тюбик с такой пастой прикладывают к «кулерам» для микропроцессоров. Смазывать поверхность надо тонким, но равномерным слоем.

Если на один радиатор ставятся два прибора, у которых корпуса находятся под разным напряжением, то под один из них нужно подложить изолирующую прокладку, под крепежные винты — изолирующие пластиковые шайбы, а на сами винты на длину, равную толщине радиатора в месте отверстия, надеть отрезок изолирующей трубки (рис. 5.4).

Рис. 5.4. Крепление транзистора в корпусе ТО-220 к радиатору при необходимости его изоляции:

1 — радиатор: 2 — отверстие в радиаторе; 3 — изолирующие шайбы; 4 — стягивающий винт; 5 — гайка; 6 — изолирующая трубка; 7 — слюдяная прокладка; 8 — пластмассовая часть корпуса транзистора; 9 — металлическая часть корпуса транзистора (коллектор); 10 — выводы транзистора

Самые качественные изолирующие прокладки — слюдяные, хороши прокладки из анодированного алюминия (но за ними надо внимательно следить, чтобы не процарапать гонкий слой изолирующего окисла) и из керамики (которые, впрочем, довольно хрупки и могут треснуть при слишком сильном нажиме). Кстати, за неимением фирменных прокладок можно использовать тонкую фторопластовую (но не полиэтиленовую, разумеется!) пленку, следя за тем, чтобы ее не прорвать. При установке на прокладку теплопроводящая паста наносится тонким слоем на обе поверхности — и на транзистор, и на радиатор.

Помехи

В заключение главы проясним ситуацию, связанную с сетевыми помехозащитными фильтрами. Вопреки распространенному мнению, такие фильтры чаще защищают от помех внешнюю сеть, а не сам прибор от внешних помех, проникающих из сети (исключение, конечно, составляют радиочастотные устройства). Если вы включите напрямую в сеть тиристорный регулятор, мощное электронное реле или импульсный блок питания (вроде компьютерного), то помех не избежать — как электрических по проводам сети, так и электромагнитных, распространяющихся в пространстве. Чем мощнее нагрузка, тем больше эти помехи. Особенно чувствительны к их воздействию АМ-приемники: мощный регулятор может подавить передачи Би-Би-Си не хуже советских глушилок.

Для того чтобы свести помехи импульсных приборов к минимуму, необходимо, во-первых, заземлить корпус прибора, во-вторых, на входе питания устройства вместе с нагрузкой поставить LC-фильтр. Это относится и к достаточно мощным преобразователям в интегральном исполнении.

Заметки на полях

Чтобы заземлить корпус, он, естественно, должен быть металлическим или металлизированным. Если же корпус чисто пластмассовый, то его нужно изнутри обклеить алюминиевой фольгой потолще (та, что для применения в микроволновых печах, конечно, не подойдет). Надежно обеспечить контакт вывода заземления с таким экраном непросто — это можно сделать, приклеив зачищенный на несколько сантиметров провод широким скотчем или соорудив прижимной контакт из упругой бронзы (например, из контакта старого мощного реле). Корпуса всех внешних разъемов, если они металлические, также следует надежно соединить с заземленным корпусом. Экран, как мы говорили ранее, соединяется с «землей» прибора (в одной точке), но если у вас сетевой блок питания, то экран тогда целесообразнее соединить с заземлением (зеленый провод) в сетевой вилке. Это может показаться бессмысленным ввиду отсутствия настоящей (без кавычек) земли в большинстве наших домов, но на самом деле совсем не глупо, если несколько приборов соединяются через один блок розеток с общим заземлением. В то же время для ряда схем, особенно измерительных, соединять экран с «землей» (общим проводом) схемы не следует — сами они помех не создают, а присоединение экрана к общему заземлению может ухудшить их работу.

На рис. 5.5 приведены два варианта построения развязывающего LC-фильтра. Первый (вверху) вам уже знаком по схеме импульсного преобразователя (см. рис. 4.9). Второй, более сложный вариант (внизу), предназначен для схем помощнее, подобные фильтры входят, например, в удлинители типа «Пилот». При небольших токах берут готовые дроссели, как уже говорилось, они внешне очень похожи на резисторы. Для изготовления дросселей при больших токах (несколько ампер и более) нужно взять ферритовое кольцо марки 600—1000НН диаметром 15–24 мм и намотать на него виток к витку провод МГШВ сечением около 1 мм2 до заполнения.

Рис. 5.5. Схемы фильтров сетевого питания для подавления помех

Во втором варианте фильтра дроссели L1 и L2 можно объединить, намотав их на одном кольце, причем если помехи будут подавляться плохо, то надо поменять местами начало и конец одной из обмоток. Конденсаторы — любые неполярные на напряжение не менее 400 В, среднюю точку их во втором варианте нужно подсоединить к заземлению (т. е. к уже заземленному корпусу). Если таковое отсутствует, то все равно надо присоединить эту точку к экрану корпуса прибора, но без настоящего заземления эффективность фильтра заметно ухудшится, — фактически он превратится в несколько улучшенный первый вариант.