§ 3.9 Кристаллическое строение элементарных частиц и их распады
§ 3.9 Кристаллическое строение элементарных частиц и их распады
А если и в самом деле, протоны и нейтроны как кирпичики ядерных конструкций сложены из электронов и позитронов?… то могли же нуклоны возникнуть в виде кубических квазикристаллических образований, аналогичных известным кристаллам… Электроны с позитронами ещё не эфир, но во всяком случае — та промежуточная материя, из которой построены и кирпичи — нуклоны и ядра всех элементов, и сотен видов осколков из них, так называемых "элементарных" частиц.
В. Мантуров, "Ядерные силы — предложение разгадки" [79]
Выше было показано, что элементарные частицы совсем не элементарны, а состоят из немногих видов более простых кирпичиков, равно как сотню химических элементов-атомов образуют три типа частиц: электроны, протоны и нейтроны. Элементарные частицы и атомы — элементарны, неделимы, лишь пока не достигнуты энергии достаточные для их деления, разрушения. Так же, кирпичная стена выглядит монолитом, пока не ударишь так, что она рассыплется на кирпичи. Вот и атомы, что значит "неделимые", называют так в том смысле, что при земных температурах их обычно можно считать элементарными частицами материи. Элементарность, неделимость — понятия условные, верные лишь в данном диапазоне энергий. Материя бесконечно делима: каждая частица может быть разбита на более простые, в свою очередь, состоящие из других. В бесконечной делимости не больше странного, чем в бесконечной протяжённости пространства и времени. У мира нет пределов вширь, вдаль и вглубь (§ 2.6)! Эту материалистическую идею развивали ещё К. Циолковский, Э. Вихерт. Да и другой поборник материализма не зря сказал век назад, что электрон так же неисчерпаем, как и атом, ибо природа бесконечна.
Учёные, однако, верят, что частицы — элементарны, хотя даже процессы распада (скажем, нейтрона — на протон и электрон) доказывают, что частицы — составные. Отсюда и слово "распад". Но, почему-то, сочли, что происходит не распад, а волшебное превращение одних частиц в другие, словно нет частиц более простых, и каждая частица состоит из всех прочих. Эта абсурдная идея, названная теорией бутстрапа (частицы зашнурованы, замкнуты сами на себя [165]), совершенно ненаучна и сродни домыслам тёмных алхимиков, тоже считавших, что в химических реакциях вещества превращаются друг в друга, хотя в действительности шло лишь деление и слияние молекул. Это было простительно прежним алхимикам, не знавшим о дискретной структуре вещества. Но нынешним алхимикам-ядерщикам, занимающимся трансмутацией материи и верящим, что в ядерных реакциях частицы волшебным образом обращаются друг в друга, повторять их ошибку недопустимо.
Впрочем, желание физиков систематизировать элементарные частицы заставило их выдумать кварки, из которых, якобы, составлены частицы. Но, во-первых, ввели уже десятки кварков, а элементарных типов кирпичей должно быть немного. Во-вторых, кварки ввели формально, наделив нелепыми свойствами: дробным зарядом и гигантской массой. В-третьих, они до сих пор не найдены [165]. Поэтому кварки — та же мистика, что и превращение частиц.
Выше мы видели, что гораздо естественней каждую элементарную частицу представлять в виде набора всего трёх типов мезонов. Но, ведь, и мезоны отнюдь не элементарны, а состоят из ещё более мелких частиц. А, поскольку, наука уверенно определила пока только две частицы, имеющие массу, меньшую мезонной, — это электрон и позитрон, то естественно предположить, что именно из этих частиц составлены, в конечном счёте, ядра, протоны, мезоны и все прочие частицы [124]. Тем более, что мы уже видели, насколько удобно представлять ядра и атомы составленными из периодично расположенных электронов и позитронов (§ 3.2). Так, В. Мантуров предположил, что электроны и позитроны, притягиваясь друг к другу, способны сливаться не только в пары, но и в крупные конгломераты: ядра, протоны и нейтроны, насчитывающие тысячи частиц и представляющие собой своего рода кристалл из чередующихся электронов и позитронов, вроде кристалла соли. Не зря, именно из ядер гамма-излучение выбивает электрон-позитронные пары [85], подобно обычному свету, вырывающему электроны из металла. То есть, гамма-излучение не превращается в частицы, а лишь выбивает, разделяет уже существующие в ядрах пары, иначе рождение таких пар было бы возможно и в вакууме.
Поэтому, лучшие кандидаты в стройматериал для материи — это частицы с наименьшей массой и зарядом, то есть электроны и позитроны. Только этим частицам-кирпичикам присущ собственный элементарный заряд, масса и магнитный момент, лишь их наличие в составе придаёт эти характеристики другим частицам. Электрон и введён был как элементарный отрицательный заряд e-, а позитрон (антиэлектрон) — положительный e+. Из них сложены заряды всех тел и частиц, оттого заряд и кратен заряду электрона. Лишь спустя время все частицы (например, протон) стали наделять самостоятельным зарядом, хотя неясно, с чего ему быть таким же по величине, как у электрона. Модель постройки частиц из электронов и позитронов наиболее проста и естественна, поскольку:
1) фундаментальных частиц всего две — e+ и e-;
2) заряд частицы равен сумме зарядов образующих её e+ и e-;
3) магнитный момент частицы равен векторной сумме магнитных моментов e+ и e-;
4) масса частицы есть сумма масс её электронов и позитронов (оценочно их общее число равно массе частицы, измеренной в массах me). Ведь масса тела — это количество материи, по сути, число образующих его однотипных частиц (e+ и e-). Наконец, и объём частицы равен сумме объёмов всех её электронов и позитронов. Не зря, размер протона, сложенного из e+ и e-, порядка радиуса электрона — 10-15 м. Благодаря тому, что элементарные частицы составлены из плотно сцепленных электронов и позитронов, все они имеют равную плотность, отчего объём частиц пропорционален их массе [21]. Для ядер этот факт уже давно доказан [135].
Тот факт, что все частицы, нуклоны и ядра составлены, в конечном счёте, из электронов и позитронов, подтверждается хотя бы их испусканием в распадах частиц или под действием гамма-лучей. Так, большинство лёгких радиоактивных ядер испытывают ?—- либо ?+-распад, то есть испускают электроны e— или позитроны e+. Отсюда следует, что электроны и позитроны входят в состав ядер, нуклонов и других частиц, отделяясь от них при распаде и облучении. Однако, их присутствие в ядрах и нуклонах отвергают на основании квантовой механики, по которой магнитные моменты нуклонов и ядер, а, также, энергии вылетающих электронов — отличались бы от измеренных [135, с. 35]. Но это лишь в рамках квантовой механики. Если же верна классическая физика и кристаллическая модель нуклонов, составленных из тысяч электронов, то никакого противоречия нет (§ 3.15). Наконец, сложную структуру протона и нейтрона, образованных из многих точечных зарядов, подтверждает характер рассеяния на них электронов высоких энергий. Фейнман назвал эти точечные заряды "партонами" [156, 165], хотя на деле это, видимо, всё те же электроны и позитроны в составе частиц [79].
Итак, все "элементарные" частицы, на деле, отнюдь не элементарны, а состоят из более мелких, — мезонов или электронов. Что же удерживает все мелкие частицы-детальки в составе крупных? Как они расположены в сборной частице, какие пространственные структуры образуют? Выше было показано, что ядро, протоны и нейтроны имеют кристаллическую структуру — образованы из периодично расположенных в пространстве электронов и позитронов, образующих своего рода электрон-позитронную решётку. Кристалловидное строение должно быть свойственно не только атомам, ядрам, но и мезонам. В конце концов, раз есть кристаллы, построенные из атомов, то почему не быть кристаллам, образованным элементарными частицами, электронами и позитронами? Так же, как для атомов, клеем, цементирующим мезоны или электроны внутри кристаллов-частиц, будут служить электрические силы. Многие учёные уже считают, что ядерные и другие взаимодействия, удерживающие частицы, — это лишь частные проявления электрического взаимодействия [19, 79], так же как и магнетизм с гравитацией (§ 3.16).
Из такого электрон-позитронного строения следует также, что масса частицы равна числу образующих её электронов и позитронов. Напомним: ещё Ньютон определял массу тел как количество заключённой в них материи, тем самым, как бы, вводя в соответствии с атомистическим учением Демокрита некие первоосновные точечные частицы единичной массы — "амеры" [31]. И если из них построены все прочие частицы, то масса любой из них — это число таких единиц в её составе. Этими частицами стандартной единичной массы, как видели, окажутся именно электроны с позитронами. Вот как эту идею Демокрита излагает Лукреций [77, с. 42]: "Есть предельная некая точка тела того, что уже недоступно для нашего чувства, то, несомненно, она совсем неделима на части, … ибо другого она единая первая доля, вслед за которой ещё подобные ей, по порядку сомкнутым строем сплотясь, образуют телесную сущность… И ничего ни отторгнуть у них, ни уменьшить природа не допускает уже, семена для вещей сберегая". Как видим, эти единичные частицы-семена (амеры Демокрита) в точности подобны электронам, так же имеющим стандартный вес, который не может уменьшаться (§ 1.5), и образующим, при соединении в правильном порядке, все прочие частицы и атомы.
Правильная кристаллическая форма частиц микромира не только энергетически выгодна, но и объясняет, почему одинаковы свойства у частиц одного типа, скажем, у двух протонов: они похожи как кристаллы одного минерала. Насыпьте горсть кристаллов сахарного песка — и в этой россыпи пред вами будут сотни близнецов. Точное подобие формы кристаллов, их граней, идеальное равенство углов — не такую ли идентичность свойств мы наблюдаем у элементарных частиц? Собственно говоря, и Демокрит пришёл к идее атомов, наблюдая кристаллические зёрна горных пород, крупинки песка. Кристаллическая форма — единственно возможная для частиц микромира, мира порядка, идеального подобия структур.
Итак, подобно ядрам и протонам (§ 3.2), из электронов и позитронов составлены, как из кирпичиков, и все прочие частицы — мезоны, гипероны, резонансы и т. п. При этом, электроны и позитроны составляют прежде блоки (мезоны), а уже из них строятся тяжёлые частицы. Мы, ведь, никогда не говорим, что автомобиль состоит из винтиков, гаек, деталек, сварных листов и т. п. Но показываем, что в нём есть двигатель, трансмиссия, шасси и кузов. Так и частицы правильнее подразделять не на сотни отдельных электронов и позитронов, а на образуемые ими крупные комплексы, блоки, то есть, — на более сложные и тяжёлые частицы. Выше было показано, что фактически любую частицу можно представить в виде набора трёх типов мезонов, комбинируемых в разных сочетаниях. Потом удалось свести их даже к двум, когда выяснилось, что ?-мезоны (пионы) — сами составные. Далее оказалось, что картину можно ещё упростить и исключить минусовые массы, если признать и ?-мезон (мюон) составной частицей, включающей в себя несколько гаммонов. То, что мюон составной, следует уже из его распада.
Как легко видеть, гаммонов в мюоне может быть не более трёх. Ведь в сумме масса трёх гаммонов 66·3=198 немного не добирает до массы мюона, равной 207, или 206, если исключить массу электрона, придающего мюону заряд. Очевидно, остаток с массой, равной восьми электронным (8me), соответствует новой частице. Эту гипотетическую частицу можно назвать "окто-мезоном" (или "октоном" — по её массе), обозначив "О". Поскольку, она до сих пор не открыта, то, надо думать, она так же нейтральна, как гамма-мезон. Мешает её обнаружению и малая масса. Что касается заряда мюона, то, раз его образуют нейтральные гаммоны и октоны, он обязан содержать, сверх того, — один избыточный электрон (или позитрон, если речь идёт о положительно заряженном антимюоне). Именно этот электрон вылетает из мюона при его распаде (Рис. 118). Оставшаяся масса мюона, как считают, попросту исчезает. На деле же она сохраняется в виде трёх гаммонов и октона, — нейтральных, а потому незаметных. Напомним, что точно так же сохраняется в виде гаммонов и масса при распадах пионов (§ 3.8).
Рис. 118. Предполагаемая схема распада мюона, его возможное строение и массы компонентов.
Итак, если мюон состоит из трёх гаммонов, одного октона и одного электрона, его масса составит 66·3+8+1=207. Тогда нейтральный пион состоит из четырёх гаммонов, а заряженный пион будет состоять из четырёх гаммонов, октона и электрона. Так что, его масса M=66·4+8+1=273. Таким образом, заряженный пион отличается от незаряженного только наличием октона, сцепленного с электроном. Гаммон и октон тоже должны, в свою очередь, состоять из электронов и позитронов. Удивляет, однако, почему же именно эти сочетания элементарных зарядов образуют стабильные блоки в виде длительно не распадающихся частиц. В случае октона, ответ напрашивается сам собой: ведь 8 — это число, сопряжённое с высокой устойчивостью. Недаром, в таблице Менделеева восьмёрка играет столь важную роль, порождая восемь групп элементов и служа основным периодом повторения свойств элементов, подобно тому как в музыке через октаву повторяется звукоряд. Также 8 — это одно из шести магических чисел, — особо устойчивых сочетаний нейтронов или протонов в ядре (§ 3.6). Интересно отметить, что и БТР с "Луноходом" сконструировали восьмиколёсными именно для обеспечения устойчивости на пересечённой, "тряской" местности (Рис. 200). Подобная "тряска" действует и в мире элементарных частиц, подвергающихся постоянным ударам (§ 3.14). И, во избежание скорого крушения, частицам необходима геометрическая устойчивость.
Причину такой "магичности" числа восемь легко понять. Ведь 8=23: именно восемь частиц образуют куб, размещаясь в его вершинах. Видно, так устроен и октон: из чередующихся в углах кубика четырёх электронов и четырёх позитронов. Заметим, что ещё И. Ленгмюр допустил способность восьми электронов, расположенных в атоме в вершинах куба, образовывать сверхстабильную структуру, чем объяснил периодичное повторение свойств элементов и апатичность инертных газов, с их целиком заполненными куб-оболочками (Рис. 106). Зато квантовая физика так и не объяснила толком, почему групп элементов ровно восемь. И лишь кристаллическая модель атома позволяет обосновать избранность восьмёрки, поскольку восьмивершинный куб и параллелепипед — это самая распространённая и простая форма кристаллической ячейки.
Осталось выяснить, почему стабильным оказывается и гаммон, — частица с массой в 66 электронных. Если дело в устойчивости кристаллической структуры, то причина, возможно, в близости 66 к 64=43. Иными словами, 64 частицы составляют куб с ребром в 4 частицы. И он тоже будет стабильным, поскольку электроны и позитроны стали бы в нём чередоваться, словно положительные и отрицательные ионы в кубическом кристалле соли (Рис. 119). Таким образом, гаммон должен состоять из 32-х электронов и 32-х позитронов. Правда, непонятно, откуда берутся в гаммоне две дополнительные единицы массы. Но, учитывая, что масса его рассчитана теоретически, а не измерена в опыте, вполне может статься, что реальная масса — именно 64. К тому же, надо учесть, что взаимодействие электронов и позитронов, их сближение и движение отдельных частиц может приводить к неточному измерению их общей массы (§ 3.18).
Рис. 119. Строение октона и гаммона, составленных из чередующихся электронов и позитронов.
Раз мюоны и пионы — составные, то все прочие частицы, представленные их наборами, можно представить и в виде сочетаний более простых частиц. Поэтому, пользуясь прежними таблицами (Таблица 2 и Таблица 3, учтённые в колонке I) и тем, что ?=3Г+О, ?0=4Г, а ?—= 4Г+О, можно нарисовать более полную и точную картину микромира (Таблица 4), изображая все частицы в виде наборов гаммонов и октонов (колонка II). В таком представлении минусовые массы окончательно исчезают. Так, K+-мезон состоит из 14 гаммонов и 5 октонов, что даёт для него M= 66·14+8·5= 964 (реально M= 966). K0-мезон построен из 14 гаммонов и 6 октонов, откуда M=66·14+8·6= 972 (реально M= 974). Неточность возникает от округления масс гаммона и октона до ближайшего целого числа и неучтённых масс электронов и позитронов, дополняющих комбинацию. Но грубо массу любой частицы можно искать по формуле M=66x+8у, где x и y — это числа гаммонов и октонов в частице.
Итак, все типы частиц можно представить в виде сочетания двух основных: гаммонов Г (с M=66) и октонов О (с M=8–9), дополненных иногда, для баланса заряда, электроном или позитроном. Существование гаммонов подтверждают реакции распада пионов, где бесследно исчезает масса, кратная 66 (Рис. 116). А реальность октонов следует из распада мюонов и того, что в семействах частиц (Таблица 4, выделены серым) массы M разнятся в среднем как раз на 8,5 единиц. Похоже, гаммоны и октоны, подобно нуклонам в ядре, выстраиваются в некие пространственные структуры, что объясняет стабильность одних частиц и нестабильность других. Мерой стабильности будет, как везде, степень симметрии, совершенства частицы, близости её к правильным геометрическим телам [21]. Частицы, структура которых несовершенна, — нестабильны и быстро распадаются. Так, и в природе: прочнее всего, тела, имеющие совершенную, кристаллическую форму. Менее прочны кристаллы с дефектами структуры. Наконец, наименее прочны аморфные тела. Всё это хорошо видно на примере кварца, кварцевого стекла и обычного стекла.
Более стабильны сочетания, в которых число частиц равно кубу или квадрату целого числа (Рис. 120). Взять, к примеру, гаммоны или октоны, построенные, соответственно, из 64 и 8 частиц. Так же, и пионы, состоящие из 4-х гаммонов, образующих квадрат 2x2, живут заметное по меркам микромира время. По той же причине, достаточно стабилен ?-мезон, составленный из 4x4=16 гаммонов. Наиболее симметричен протон: в нём 27=33 гаммонов. Поэтому протон — одна из немногих стабильных частиц. Другая частица, у которой число гаммонов равно кубу, — это ?+-гиперон: 64=43 (Таблица 5). Вот почему эта частица, несмотря на большую массу, при которой стабильность обычно мала, обладает, всё же, заметным временем жизни.
Рис. 120. Возможная структура элементарных частиц, состоящих из гаммонов, в свою очередь образованных электронами и позитронами.
Пользуясь этим, можно предсказать новые частицы. Особая стабильность должна отличать частицу из восьми гаммонов, образующих куб, поэтому назовём её "кубоном", обозначив буквой "C" (Рис. 120). Однако, такая частица с M=66?8=528 до сих пор не открыта. Возможно, причиной тому её нейтральность и стабильность (от кубической структуры), что мешает её обнаружить, как и гаммоны с октонами. Правда, согласно книге Д. Данина [43], в арагацкой высокогорной обсерватории среди космических лучей некогда уверенно регистрировали частицы с массами около 300, 500 и 1000 электронных. Частицы с массой около 300 (?-мезоны) и 1000 (K-мезоны) действительно были впоследствии открыты. Однако частицы с M порядка 500 до сих пор не найдены. Так, может, это были кубоны? Их существование подтверждает и распад ?-мезона, который при делении на два заряженных пиона, бесследно теряет в весе как раз массу 528. Не кубон ли её уносит?
Такой кристаллический подход к объяснению стабильности частиц позволяет понять, почему из всех частиц наиболее стабилен, прочен и долгоживуч протон. Таблица 4 сразу даёт на это ответ: только у протона число гаммонов x=27 составляет куб целого числа: 27=33. По-видимому, эти 27 гаммонов складываются в правильный куб, вроде кубика Рубика, тоже состоящего из 27 мелких кубиков. Что же касается шести октонов, то они, вероятно, выполняют в этом кубе связующую функцию (подобно тому, как в кубике Рубика есть шесть сцепляющих кубики шарниров) или располагаются на шести его гранях. Таким образом, лёгкие октоны могут играть внутри частиц ту же роль, что нейтроны в ядрах, будучи связующим звеном, цементом, прокладкой между блоками частиц. Могут они выполнять и функции гнезда, в котором крепко сидят электроны и позитроны, придающие частицам заряд. Учитывая сказанное, можно узнать строение и всех прочих частиц, сложенных из кубиков, наподобие игрушечных зданий (Рис. 121). Таким образом, частицы должны выглядеть не как шарики, а иметь углы, грани, кромки, совсем как кристаллы. Микромиру, равно как объектам макро-, да и мегамира, свойственно кристаллическое, ячеистое, клеточное строение!
Рис. 121. Возможное строение протона и пионов, построенных из сотен электронов и позитронов, как кристаллы соли — из ионов Na+ и Cl-.
Стоит отметить, что из одного и того же числа гаммонов и октонов, по-разному их соединяя, можно составить несколько устойчивых конструкций. Возможно, поэтому частицы данной массы и заряда встречаются в нескольких вариантах. Точно так же, и ядра, имеющие одинаковый протон-нейтронный состав, могут иметь разные свойства и периоды полураспада за счёт разного пространственного размещения в них протонов и нейтронов (§ 3.6). Так же, и в химии у молекул может быть идентичный атомный состав, но разные свойства. Химические свойства молекулы зависят не только от того, какие её составляют атомы, но и от того, в каком порядке они располагаются и какие пространственные структуры образуют, как было открыто ещё русским химиком А. Бутлеровым, и как было предсказано ещё до н. э. Демокритом и Лукрецием (§ 5.16). Это явление получило название изомерии, а частицы одинакового состава, но разных свойств были названы изомерами. Точно так же, как у молекул, есть изомеры у ядер (§ 3.6) и элементарных частиц. Так, K0-мезоны состоят из двух сортов частиц: K0S и K0L [86]. Равенство их масс, зарядов и магнитных моментов говорит об идентичности их электрон-позитронного состава, но располагаются электроны и позитроны в изомерах по-разному, что и ведёт к различию их свойств (времён жизни и типов распада). Возможен и такой случай, когда электроны и позитроны образуют одинаковые, но зеркально симметричные частицы, — зеркальные изомеры, также известные у органических молекул, например, у сахара, — как было открыто ещё Л. Пастером. Возможно, существование, в разной пропорции, правых и левых зеркальных изомеров частиц — ответственно за преимущественное испускание продуктов распада частиц в неком избранном направлении (§ 3.11).
Как же возникает геометрически точная кристаллическая форма атомов, ядер и частиц? Разве не должна материя собираться под действием сил притяжения в компактные капли-шарики, какими любят представлять частицы? Природа их геометрически чёткой формы та же, что у кристаллов, правильные грани которых когда-то тоже удивляли людей. Видно, форма кристаллов и подсказала Платону идею частиц-многогранников (§ 5.3). Ровные плоские грани кристаллов возникают оттого, что они построены из одинаковых упорядоченно сложенных частиц, атомов. Правильное размещение частиц обеспечивает минимум энергии связи, к которому стремятся все системы. Атомам энергетически выгодней не надстраивать атомную плоскость, а дополнять атомные слои до ровных, контактируя с возможно большим числом соседей. Так и возникают правильные многогранные формы кристаллов.
Если атомы, ядра и элементарные частицы и впрямь имеют структуру кристаллов, то и они должны быть составлены из множества однотипных упорядоченно расположенных частиц. И, точно, атом, как выяснили, сложен из ядра и электронов, образующих правильные конфигурации — слои, уровни, задающие чёткую структуру таблицы Менделеева (§ 3.3). Ядро, в свою очередь, образовано из протонов и нейтронов, расположенных так же упорядоченно, что подтверждают магические числа протонов и нейтронов, образующих особо стабильные ядра (§ 3.6). Наконец, сами протоны, нейтроны и прочие элементарные частицы — вовсе не элементарны, раз могут распадаться. Они образованы другими однотипными частицами, — электронами и позитронами, опять же сложенными в виде чёткой решётки. Проверить, так ли всё это на самом деле, можно с помощью метода, аналогичного рентгенографии обычных кристаллов. Направляя на одинаково сориентированные атомы, ядра и частицы пучок гамма-лучей с длиной волны порядка межэлектронного расстояния (10–15 м), удастся выявить по методу Лауэ дифракцию гамма-лучей на расположенных в правильном порядке элементарных частицах. Если на фотоплёнке возникнет дифракционная картина, то это докажет реальность кристаллического строения частиц. Изучая полученную лауэграмму, можно будет также точно рассчитать, как именно и на каком расстоянии расположены элементарные частицы, образующие более крупные кристаллические комплексы.
Итак, именно геометрический, пространственный подход открывает истинную структуру элементарных частиц и позволяет понять многие их свойства. А квантовый подход — слишком сложен, условен, формален и совершенно не отражает реального устройства частиц. Такой кристаллический подход к строению и распаду частиц мог быть развит ещё век назад первым исследователем радиоактивности — Пьером Кюри. Именно Кюри как химик и физик много сделал для понимания свойств кристаллов и вскрыл важную роль симметрии. Кроме того, будучи исследователем атомного магнетизма и коллегой П. Вейсса, Кюри, наверняка бы принял кристаллическую магнитную модель атома Ритца и мог однажды приложить эти знания к объяснению распадов ядер. Но Кюри погиб в 1906 г. от несчастного случая в возрасте 46 лет, и развитие структурного, кристаллического подхода к радиоактивности задержалось на век. Лишь сейчас к учёным постепенно приходит понимание огромной роли геометрической структуры частиц и ядер. А, ведь, ещё в Древней Греции Платон и Пифагор осознали большое значение геометрии и правильных геометрических тел для познания микромира. На фоне нынешних учёных, одурманенных бесструктурной теорией относительности и квантовой физикой, даже эти древние греки выглядят не мистиками, а последовательными материалистами.