6. Топологическая изменчивость

«Топология – раздел математики, изучающий в самом общем виде явление непрерывности, в частности свойства пространств, которые остаются неизменными при непрерывных деформациях, например, связность, ориентируемость. В отличие от геометрии, в топологии не рассматриваются метрические свойства объектов (например, расстояние между парой точек). Например, с точки зрения топологии, кружка и бублик неотличимы». – Википедия. То есть, плавной деформацией мы можем превратить кружку в бублик, не делая разрывов и склеиваний. Например, лапы всех кошек легко трансформируются в конечности приматов. И мы опять должны отметить, что топологические изменения, которые образуются в фенотипе, переходят в генотип (у общих предков этих животных).

Но если особенности фенотипа, приобретённые в онтогенезе в ответ на некоторые воздействия внешней среды, наследуются, то этим, очевидно, можно объяснить эволюцию и без естественного отбора. Действительно, например, жирафы напрягают шею, чтобы достать высоко растущие листья на деревьях.

Если это «упражнение» перейдет в наследственную память, то у потомков шея будет длиннее. Это очевидно. И не нужен естественный отбор.

Август Вейсман в конце XIX в. понял эту нелогичность теории Дарвина и выдвинул строгий тезис о не наследуемости приобретённых признаков. Но он сначала проверил этот тезис на жестоком опыте. Он отрубал хвосты мышам в течение 22 поколений. Это ли не влияние внешней среды! Хвосты у потомков не изменились. Потом, в середине XX в. Френсис Крик выдвинул понятие центральной догмы молекулярной биологии. И вопрос о наследовании приобретённых при жизни (в онтогенезе) признаков больше не обсуждался, не смотря на явные факты (рис. 10). Как велика сила влияния авторитетов!

Рис. 10. Пример топологической изменчивости

Теперь при открытии алгоритма накопления опыта оказалось, что наследование может быть более или менее жестким. Хвосты у мышей наследуются очень жестко, так как хвостатые животные появились сотни миллионов лет назад. Также давно сформировались многие современные структуры и алгоритмы организмов.

И если предположить, что изменения организмов доступны при помощи повторения уже имеющихся генов (Алгоритм восстановления испорченной информации), как вновь приобретенные изменения уже существующих признаков, то топологическая изменчивость вполне объяснима. При удлинении шеи жирафа присутствуют только количественные изменения, качественных изменений нет. Этот пример типичен. Естественный отбор остается необходимым фактором, так как потребность в топологической изменчивости обусловлена в основном изменениями окружающей среды, которые случайны. Например, началось похолодание, и сразу начинает развиваться шерстяной покров на коже, отбираются животные с длинной шерстью.

Но как объяснить противоречие, связанное с топологической изменчивостью, которое заключается в том, что норма ее практически не уменьшается с поколениями организмов, что, на первый взгляд, противоречит алгоритму накопления опыта? Вспомним, как мы устанавливали уровни памяти этого алгоритма в конструкции автомобиля. Там у нас оказалось, что опыт конструирования отдельных узлов накапливается, они совершенствуются и, в последующих конструкциях (поколениях), остаются почти неизменными. А внешний вид автомобиля и внутренняя отделка салона сильно меняются. Диапазон различных вариантов этих элементов очень велик, более того – ограничен только фантазией дизайнеров. А кто скажет, где ее границы?!

Но, вернемся к организмам. Тут характерный пример таков. Алгоритм синтеза белков на рибосомах есть у всех организмов на Земле, то есть абсолютен, и, одновременно, существует очень большая и легкодоступная отбору топологическая изменчивость. Например, выведение животных и растений при помощи искусственного отбора, преобразование тела китообразных при возвращении их с суши в море и т.д.

Аналогия с автомобилем налицо. Значит, есть и некоторая общая закономерность. Рассмотрим организмы. Естественный отбор всегда работает по одному или некоторому ограниченному числу признаков. А многие остальные признаки (их великое множество) остаются без изменений, так как не влияют (в каждом конкретном случае) на выживаемость организмов. Например, кажется очевидным, что длина тела и другие размеры высших животных (длина конечностей и проч.) почти не влияют на выживаемость. То есть, норма изменчивости этих признаков очень велика. Получается, что, например, длина тела львов различна у индивидуальных животных. Она зависит, например, от условий жизни (питания, активности и проч.). И каждый раз в наследственную память попадает разная длина тела, причем с одинаковым и большим разбросом в меньшую и большую сторону. Опыт (определенной длины тела) не накапливается и соответствующий алгоритм не работает.