Адрес во вселенной

We use cookies. Read the Privacy and Cookie Policy

Ты посылаешь письмо другу. На чистом конверте записываешь адрес: город, улицу, номер дома. А можно ли записать наш с тобой адрес в бескрайних просторах Вселенной? Оказывается – можно, поскольку Вселенная вовсе не хаотическое нагромождение разных разностей. Она структурна.

Наш общий дом – планета Земля. Это понятно. А улица? Улицей можно считать место, где расположилось Солнце и его «дети» – окрестные планеты. Стало быть, наша улица – планетная система у звезды по имени Солнце. Ну, а город? Мы только что сравнивали с городом множество звезд, образующих Галактику. Это и есть город, в котором «проживает» Солнце.

Подобно звездам, группирующимся в «звездные города», отдельные галактики тоже группируются в скопления галактик, которые образуют всеобъемлющую систему галактик – Метагалактику.

Вот и получается наш адрес во Вселенной:

Метагалактика —

Галактика —

Солнце —

Планета Земля.

Единицей измерения межзвездных и межгалактических расстояний служит световой год. Световой год – расстояние, которое луч света проходит за год. А распространяется свет, как известно, со скоростью 300 тыс. км/с. Один световой год составляет округленно 9 триллионов 460 миллиардов километров.

Расстояния между галактиками фантастически велики. От ближайшей к нам соседней галактики – туманности из созвездия Андромеды – свет идет около 2 млн лет.

По сравнению с такими чудовищными расстояниями размеры каждой отдельной галактики оказываются несколько скромнее. Наша Галактика, например, имеет в поперечнике меньше 100 тыс. световых лет.

Схема строения Галактики, рассматриваемой «с ребра», по современным представлениям. Стрелка указывает положение Солнца. Большие белые пятна – шаровые звездные скопления, темная полоса вдоль галактической плоскости – тонкий слой поглощающей свет пылевой материи. Шкала расстояний внизу – в световых годах.

Форма нашей Галактики в целом, так же как и других галактик, напоминает двояковыпуклую линзу или, еще проще, две тарелки, сложенные краями вместе, а донышками наружу. Лист бумаги, зажатый между тарелками, дает наглядное представление об особенно богатой звездами галактической плоскости. Толщина Галактики меньше ее поперечника примерно в 12 раз.

Косвенным путем в галактической плоскости нашей Галактики, как и у многих других, обнаружены тянущиеся от ядра к периферии слегка закрученные спиральные сгущения звезд – спиральные ветви.

В центре Галактики расположено ядро с поперечником в 5 тыс. световых лет. Это, пожалуй, наименее изученная и наиболее таинственная область Галактики. Мы очень мало знаем о составе и структуре ядра, протекающих в его недрах процессах.

Наше Солнце находится в одном из спиральных рукавов почти точно в галактической плоскости, но далеко от ядра Галактики: ближе к окраине Галактики, чем к центру. Ядро Галактики наблюдается на небе как большое яркое облако Млечного Пути в созвездии Стрельца. Однако, по всей видимости, это край обширной области ядра. Основная часть ядра скрыта от земных наблюдателей темной материей – «угольным мешком».

Звезды в галактической плоскости медленно обращаются вокруг ядра Галактики. При вращении твердого тела, велосипедного колеса, например, все точки делают один оборот за одно и то же время. Точка, которая находится дальше от центра, движется быстрее. Обращение звезд в Галактике происходит иначе: чем дальше звезда от центра, тем медленнее ее движение.

Ньютон установил, что небесное тело, находящееся в поле тяготения другого, более массивного небесного тела, движется вокруг него по замкнутой эллиптической орбите. Так движутся вокруг Солнца планеты. Однако движение звезд вокруг центра Галактики, хотя оно тоже подчиняется закону всемирного тяготения, происходит по гораздо более сложным траекториям.

Поле тяготения внутри Галактики определяется не единой центральной притягивающей массой, которая значительно превосходит все остальное, как, например, в Солнечной системе, а складывается из суммарного действия всей совокупности входящих в нее звезд. В этом случае каждая отдельная звезда движется вокруг центра Галактики не по эллипсу, а по сложной кривой, которая часто имеет вид цветка со многими лепестками. Лепестки могут располагаться в разных плоскостях, а траектории движения звезд в подавляющем большинстве случаев оказываются даже незамкнутыми кривыми – звезды практически никогда не возвращаются на старое место относительно центра Галактики. Под влиянием сил взаимного притяжения отдельных звезд и скоплений пути звезд могут очень сильно искривляться и усложняться. Они могут скрещиваться и пересекаться. Вообще говоря, звезды могут даже встретиться друг с другом, только вероятность таких событий исчезающе мала.

Судите сами. Не будем учитывать общую скорость движения соседей Солнца вокруг центра Галактики. Рассмотрим только их движения по отношению друг к другу. В сравнении с расстояниями между звездами их взаимные движения крайне медленны. Пусть движение звезд – это ползание медлительных улиток. Длину собственного тела они проползают часов за двадцать. Улитка-Солнце находится в Москве. Тогда соседи Солнца окажутся: улитка-Сириус в Витебске, улитка-Процион – у Минска, улитка-Толиман (старинное название ближайшей к Солнцу звезды Альфы Центавра) – вблизи Бологого, а улитка-Альтаир – в Воркуте. Ползут они в разные стороны. Можно ли при этих условиях рассчитывать на встречу?

Отрезки времени, в которых удобно описывать обращение звезд в галактиках, очень велики – это миллионы и миллиарды лет.

Солнце движется вокруг центра Галактики со скоростью около 250 км/с и совершает один обход вокруг него почти за 250 млн. лет. Высказывались предположения, что смена геологических эпох, наступление ледниковых периодов и другие гигантские катаклизмы в истории Земли связаны именно с «космическим климатом», т. е. с положением Солнца относительно ядра Галактики. Подобно тому, как из-за наклона земной оси ежегодное обращение Земли вокруг Солнца приводит к регулярной смене времен года, так и обращение Солнца вокруг ядра Галактики вызывает будто бы аналогичные изменения, только в гораздо более крупных масштабах. Эти предположения пока не подтверждены и не опровергнуты. Они остаются гипотезой.

Солнце – звезда, сердце нашей планетной системы. Сила тяготения Солнца заставляет обращаться вокруг него и Землю, и другие планеты.

Солнце – это гигантский пылающий газовый шар. Объем его превосходит объем Земли в 1 300 000 раз. Температура внутри Солнца может достигать 15 000 000 К.

Астрономы обнаружили на Солнце все те же химические элементы таблицы Менделеева: водород, кислород, азот, углерод, которые были хорошо известны ученым на Земле. Только однажды в 1868 г. сразу несколько астрономов обнаружили в солнечных протуберанцах ранее неизвестный химический элемент. От греческого слова гелиос – «солнце» – новый элемент назвали гелием. В 1895 г. гелий был обнаружен в составе газов, выделенных из минерала клевеита, а впоследствии в небольших дозах в земной атмосфере. Теперь он с успехом служит наполнителем в многочисленных светящихся рекламных трубках.

За счет чего Солнце способно непрерывно излучать в окружающее пространство чудовищный поток лучистой энергии?

Аллегорическое изображение Солнца из книги Кая Юлия Гигина «Poeticon Astronomicon», отпечатанной в Венеции в 1482 г. Книга вышла из-под станка Эрхарда Ратдольта, нюрнбергского печатника, работавшего у прославленного астронома Региомонтана – автора астрономических «Эфемерид» (1474 г.), которыми пользовался Христофор Колумб и многие другие мореплаватели. Перебравшись в Венецию, Ратдольт основал собственную типографию – крупнейшую по изданию научной литературы. «Calendarium» Региомонтана, опубликованный Ратдольтом в Венеции в 1476 г., был первой в истории книгой с титульным листом.

Будь Солнце просто раскаленным газовым шаром, оно остыло бы всего за несколько десятков миллионов лет. Но растительная жизнь на Земле – так свидетельствует геология – существует по крайней мере миллиард лет. Жизнь нуждается в солнечной энергии. И стало быть, за последний миллиард лет энергия Солнца не истощилась.

Геологические изыскания не оставляют места для тревог, что Солнце остывает. Больше того, по данным геологов, например, древнейшие оледенения бывали даже более мощными, чем последующие.

Астрономы долго искали источник неиссякающей солнечной энергии – то «горючее», которое непрерывно обогревает всю Солнечную систему. Обнаружить его удалось в связи с успехами ядерной физики. В центральной области солнечного шара в силу колоссальных температур и давлений ядра атомов с сорванными электронными оболочками тесно прижимаются друг к другу, и в этих условиях начинает идти термоядерная реакция превращения водорода в гелий. В глубоких недрах Солнца идет та самая реакция, о которой тщетно мечтали средневековые алхимики, – реакция превращения одного химического элемента в другой.

Солнце – сгусток пылающей материи – является колоссальным природным реактором. В течение миллиардов лет этот реактор перерабатывает собственное вещество.

Современная наука также сумела воспроизвести эту «солнечную» реакцию, но, к сожалению, еще не научилась управлять ею. Мы знакомы с ней только в неуправляемой форме, при взрыве; реакция превращения водорода в гелий происходит при взрыве водородной бомбы.

Исследования показали, что при термоядерной реакции превращения водорода в гелий выделение энергии на каждый грамм «употребленного» водорода составляет 6-1011 Дж. Нетрудно рассчитать, зная общее солнечное излучение, что «сгорание» водорода на Солнце идет со скоростью 5 миллионов тонн в секунду.

Термоядерная реакция превращения водорода в гелий идет только в центральной части, в глубинной «топке» Солнца. Подавляющая же часть солнечного вещества в этой реакции не участвует и энергии не выделяет. Поэтому, если колоссальный общий поток солнечной энергии сопоставить с его колоссальной массой, то окажется, что количество излучаемой энергии, приходящееся на единицу массы, например, на 1 г солнечного вещества в среднем исчезающе мало. Как заметил однажды советский астрофизик В. Г. Курт, поток солнечной энергии, приходящийся в среднем на единицу массы Солнца, равен потоку энергии, выделяемой такой же по массе кучей прелых листьев в лесу.

Солнце расходует водород и стареет. Первоначально – около 5 млрд лет назад – водород составлял около 70 % от всей массы Солнца. Теперь, по расчетам, содержание его в центральной части Солнца, его «термоядерной топке» снизилось до 30-40 %. Этого хватит еще на несколько миллиардов лет.

Приведенные выше характеристики Солнца грандиозны только по сравнению с его «детьми» – планетами. Если же сравнивать с другими звездами, то окажется, что Солнце – самая простая, самая обыкновенная, самая заурядная звезда. По всем своим свойствам оно занимает среднее положение. Есть звезды и гораздо больше, и гораздо меньше. Есть и гораздо горячее, и гораздо холоднее.

Лишь исследования последнего десятилетия обнаружили особенность Солнца, которая как будто выделяет его из многих миллиардов других звезд. Солнце расположено на таком удалении от центра Галактики, на котором изменяющиеся с расстоянием от центра скорости обращения звезд вокруг этого центра сравниваются с постоянной скоростью обращения спиральной волны плотности. Окружность такого радиуса называлась бы по-русски окружностью одинакового вращения, со-вращения. В соответствии с правилами образования научных терминов она получила имя коротации.

Находясь на коротационной окружности Солнце избегает прохождений через уплотнения спиральных рукавов. Может быть, именно это обстоятельство и является необходимым условием возникновения жизни? Однозначного ответа на этот вопрос еще нет, но некоторые исследователи уже поспешили на всякий случай окрестить пояс Галактики, примыкающий к коротационной окружности, галактическим «поясом жизни».