Всемирный курьер

We use cookies. Read the Privacy and Cookie Policy

АТОМЫ

живут долго

Исследователи из английской Национальной физической лаборатории обнаружили возбужденное состояние атома иттербия, в котором он может находиться лет десять. Это открытие может иметь важные последствия для создания сверхточного эталона времени. Атомные часы основаны на том, что измеряется частота излучения электрона при переходе с одного уровня на другой. Частота — это количество колебаний в единицу времени. Если мы очень точно знаем энергии уровней перехода электрона и измеряем частоту перехода, то сможем определить величину единицы времени. В соответствии с принципом неопределенности Гейзенберга, чем дольше вы наблюдаете за системой, тем точнее можете измерить ее энергию. Поэтому у атома иттербия, о котором идет речь, за его долгую жизнь можно определить энергию очень точно.

Экспериментаторы брали охлажденные атомы иттербия и при помощи света лазера загоняли электрон на его самой внешней орбите в возбужденные состояния. Одно из них — F27/2 — и оказалось долгоживущим. Конечно же, исследователи не могли ждать десять лет, пока атом уйдет из этого состояния, время его жизни определяли иначе. При помощи того же лазера загоняли электрон в еще более высокое возбужденное состояние и изучали переходы с него на уровень «долгожитель». По частоте этих переходов можно рассчитать время жизни обоих уровней. Для F23/2 оно оказалось равным 3700 дней — это абсолютный рекорд в мире атомов. Кроме того, это оказался очень редкий переход, когда угловой момент электрона меняется сразу на три единицы (может, поэтому он так неохотно и распадается). Атомные часы, основанные на этом переходе, будут самыми точными в мире, но для реализации этой идеи придется немало поработать.

складываются, как волны

В прошлом году ученым из Массачусетсского технологического института удалось создать когерентные пучки атомов натрия. Первое применение, которое придумали этим атомным пучкам,— организовать их сложение, чтобы получить интерференционную картину, прямо как у световых волн. Если при движении пучков к месту интерференции весь прибор сдвинется или повернется, то сместится и череда темных и светлых полос — картина сложения двух волновых атомных пучков. Такие приборы с использованием двух световых пучков известны давно, их называют интерферометрами и применяют для регистрации очень небольших вращений.

Длины воля у атомных пучков гораздо короче, чем у световых, поэтому они более чувствительны к небольшим сдвигам и поворотам. Кроме того, они движутся гораздо медленнее света, а это еще больше повышает чувствительность — система повернется на больший угол, пока пучок атомов проходит свой путь. По оценкам, чувствительность атомных пучков должна превышать световые интерферометры в десятки миллиардов раз. Первые же опыты дали чувствительность в 2—Зх10-4 радиан в секунду, а более тщательные замеры в Стенфорде без особых затруднений улучшили ее в сто раз. Напомним, что планета наша поворачивается на 15 градусов в час, или 7,3x10-5 радиан в секунду.

Оба проделанных эксперимента длились всего секунду, а для серьезных измерений потребуется стабильность существенно больше. Подобной атомный прибор, чувствующий крошечные вращения, может быть полезен навигационным приборам будущего.

Рисунки Ю Сарафанова

считают штуками

Большой международной группе физиков и химиков, работающих на ускорителе тяжелых ионов в немецком городе Дармштадте (в которую входили и наши исследователи из Дубны), удалось определить химические свойства элемента 106 сиборгия, имея в распоряжении ни много ни мало, а целых семь его атомов. Пока это самый тяжелый элемент, о свойствах которого можно сказать что-то определенное.

Ученые изо всех сил старались разобраться с сиборгием (названным так в честь нобелевского лауреата Глена Сиборга), поскольку его ближайшие собратья 104-й и 105-й элементы проявляли не совсем такие свойства, которые следовало нм по их месту в строгом порядке Периодической системы элементов. Этому даже придумали объяснение: слишком много электронов уже вращается на орбитах вокруг ядер этих сверхтяжелых атомов, они искажают орбиты самых внешних электронов и поэтому меняются химические свойства, которые определяются именно внешними электронами. Заранее скажу, что сиборгий оказался законопослушным элементом и его свойства похожи на свойства более легких соседей по шестой группе — молибдена и вольфрама, но чтобы понять это, экспериментаторам пришлось изрядно попотеть.

Даже создать несколько атомов сиборгия — очень непростая задача. Это делают на ускорителях тяжелых ионов: разгоняют ионы неона 22Ne и направляют на тонкую мишень из ядер 243Cu, в результате получаются ядра 265Sq и 266Sq со скоростью примерно одна штука в час. Они вылетают из тонкой фольги мишени и останавливаются в окружающем газе гелии с крошечными (меньше микрона) капельками аэрозоля. Гелий движется и тащит за собой ядра сиборгия через тоненькие капиллярные трубки к двум устройствам, которые и определяют его химические свойства. После этого ядра сиборгия распадаются с испусканием альфа-частиц, которые тщательно регистрируют, чтобы не было сомнений, что именно он вступал в химические реакции.

Оказалось, что сиборгий образует два типа соединении, характерных для обитателей шестой группы. Больше, как вы можете себе представить, из семи атомов «выжать» не удалось, но и это немало. Блестящая демонстрация экспериментального мастерства исследователей.

А. Семенов