3. Эпоха распада

Содержимое Вселенной в эпоху распада определяется сочетанием начальной функции масс (IMF[7]) для звезд и преобразования между начальными массами звезд и массами их вырожденных остатков. Начальная функция масс остается предметом текущих исследований, но к данному моменту мы уже понимаем ее в самых общих чертах (Salpeter, 1955; Miller and Scalo, 1979; Scalo, 1986; Rana, 1991; Adams and Fatuzzo, 1996). Преобразование между массами исходной звезды и ее остатка известно достаточно хорошо (см., например, Wood, 1992), но значение массы, которая теряется во время фаз красного гиганта, требует дополнительного уточнения. Звездные объекты с самой низкой массой — коричневые карлики — были обнаружены совсем недавно (сравните Oppenheimer et al., 1995 и Golimowski et al., 1995 с более старыми аналитическими работами Stevenson, 1991 и Tinney, 1995), но, вместе с тем, они уже достаточно хорошо изучены как астрофизические объекты (Burrows et al., 1993; Burrows and Liebert, 1993).

Динамика столкновений галактик обсуждается в работах Binney and Tremaine (1987) и М. Weinberg (1989). Что касается нашего грядущего столкновения с Андромедой, орбиты соседних с нами галактик измеряются в настоящее время (Peebles, 1994; Riess et all, 1995). Динамическая релаксация галактики аналогична динамической релаксации звездных скоплений (см. Binney and Tremaine, 1987; Shu, 1982; Lightman and Shapiro, 1978); последние системы имеют много меньший размер и изменяют свою структуру за более короткие промежутки времени, в силу чего эти вопросы динамики можно изучать более прямым образом.

По прямым столкновениям звезд был проделан относительно малый объем работ, так как в современной Вселенной они крайне редки. Компьютерная модель, приведенная в третьей главе, взята непосредственно из нашей обзорно-аналитической статьи (AL97). Рассказ о звездах, сжигающих гелий и углерод, см. в работе Kippenhahn and Weigert (1990).

Хотя точная природа небарионной составляющей темной материи все еще не определена, ее общие свойства уже известны в довольно узких пределах (Diehl et al., 1995; Jungman et al., 1996; Spooner, 1997). В частности, чтобы иметь космологически интересное изобилие сегодня, поперечное сечение взаимодействия темной материи должно иметь порядок σ ~ 10-37 см2 (Kolb and Turner, 1990), а следовательно, белые карлики будут захватывать частицы темной материи, текущие через недра звезды (AL97). Изучался также захват темной материи в недрах Солнца и Земли (Faulkner and Gilliland, 1985; Press and Spergel, 1985; Krauss, Srednicki, and Wilczek, 1986; Gould, 1987).

Гипотетические рассуждения о жизни в атмосфере белого карлика вытекают непосредственно из гипотезы соответствия масштабов, введенной Дайсоном (Dyson, 1979); рассуждения же о жизни вне белых карликов базируются на простых предположениях.

Хотя теоретики предсказали распад протона, экспериментаторы пока что установили только нижнюю планку времени жизни этой частицы: порядка тридцати двух космологических декад (Particle data Group, 1998; Langacker, 1981; Perkins, 1984). Ради определенности, на протяжении большей части повествования мы принимаем время жизни протона равным тридцати семи космологическим декадам; другие значения времени жизни протона можно без труда согласовать с текстом, т. к. они не внесут в него качественных изменений. Если протон не распадется одним из простейших способов, предсказанных теориями великого объединения (см., например, Langacker, 1981; Капе, 1993), возможны множество других каналов его распада (см., например, Feinberg, Goldhaber and Steigman, 1978; Wilczek and Zee, 1979; Mohaparta and Marshak, 1980; Weinberg, 1980; Goity and Sher, 1995). Кроме того, структура вакуума в теории электрослабых взаимодействий разрешает процессы, протекающие с нарушением барионного числа; туннелирование из одного вакуумного состояния в другое может вызвать изменение барионного числа и распад протонов через временной интервал, предположительно равный ста сорока космологическим декадам (см. Rajaraman, 1987; Kolb and Turner, 1990; Hooft, 1976; AL97). Наконец, распад протона может быть спровоцирован и действием гравитации, что предположительно произойдет через сорок пять-сто шестьдесят девять космологических декад (см., например, Zel'dovich, 1976; Hawking, Page and Pope, 1979; Page, 1980; Hawking, 1987; см. также Adams et al., 1998).

Влияние протонного распада на строение и эволюцию звезд рассмотрено в следующих работах: Feinberg (1981), Dicus et al. (1982), Turner (1983), AL97, Adams et al. (1998). На остатки звезд также влияют другие долгосрочные процессы, как-то: пикноядерные реакции (Shapiro and Teukolsky, 1983; Salpeter and van Horn, 1969) и расщепление (Hubell, Grimm, and Overbo, 1980).

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК