Глава 1 ПОЛУЧЕНИЕ ОПЫТА В ИЗУЧЕНИИ ЭЛЕКТРОНИКИ

We use cookies. Read the Privacy and Cookie Policy

Я хочу дать почувствовать вам вкус к электронике — буквально! — при выполнении первого эксперимента. В этой главе книги вы узнаете:

• как с полным пониманием выполнять измерения основных электрических величин;

• как обращаться и как соединять элементы схемы не допуская воздействия на них больших нагрузок, а также не повреждая и не выводя их из строя.

Даже если вы уже имеете какие-либо предварительные знания в электронике, все равно будет очень полезно, если вы выполните эти эксперименты перед началом своего путешествия по всем остальным страницам этой книги.

СПИСОК НЕОБХОДИМЫХ ПОКУПОК ДЛЯ ЭКСПЕРИМЕНТОВ С 1 ДО 5

Если вы хотите уменьшить количество посещений магазина или количество покупок через Интернет, то посмотрите списки того, что надо купить, в остальных частях книги и, объединив их, купите все сразу целиком.

В этой главе для каждого инструмента и компонента, которые мы будем использовать, я приведу все номера деталей и места, где их можно купить (более подробную информацию о поставщиках см. в Предисловии). Впоследствии я не думаю, что вам потребуется специальная информация такого рода, поскольку вы уже получите свой собственный опыт поиска необходимых позиций.

Примечание

Компания Maker Shed (www.makershed.com) разместила на сайте ряд сопутствующих наборов Make: Electronics (Электроника своими руками). В эти наборы входят все необходимые инструменты и компоненты, используемые в экспериментах, описанных в данной книге. Приобретение таких наборов — это быстрый, простой и экономичный способ получения всего того, что необходимо для выполнения всех устройств, описанных в этой книге.

Приборы и инструменты

Маленькие плоскогубцы

RadioShack Kronus 4,5 дюйма, номер детали 64–2953 или длинноносые миниплоскогубцы Xcelite 4 дюйма, модель L4G.

Или аналогичные им компоненты (рис. 1.1–1.3). Ищите эти инструменты в хозяйственных магазинах или в местах, которые перечислены в Предисловии. Торговая марка (бренд) не имеет значения. После какого-то времени их использования у вас появятся свои собственные предпочтения. Практически вы должны решить только один момент — нравится ли вам работать с подпружиненными ручками или нет. Если вы решили, что нет, то вам наверняка понадобится вторая пара плоскогубцев, чтобы вынуть пружины из первой.

Рис. 1.1. Стандартные длинноносые тонкогубцы это основной инструмент, который используется для фиксации, изгиба и захвата упавших деталей

Рис. 1.2. Длинноносые тонкогубцы: они очень полезны для работы в местах с ограниченным доступом

Рис. 1.3. Плоскогубцы с острыми носиками были сконструированы для изготовления ювелирных изделий, но также полезны и для захвата компонентов малого размера

Рис. 1.4. Кусачки для проводов, иногда именуемые бокорезами, также очень важны

Кусачки

RadioShack Kronus 4,5 дюйма, номер детали 64–2951 или Stanley 7 дюймов модель 84–108.

Или аналогичные им компоненты. Следует использовать их для перекусывания медных проводов, а не проволоки из более твердых металлов (рис. 1.4).

Мультиметр

Модели Extech EX410, или BK Precision 2704-B, или Amprobe 5XP-A, или аналогичные им компоненты. Поскольку электричество невидимо, нам нужен инструмент для визуализации разности потенциалов (напряжения) и протекающего тока (силы тока), а тестер это единственный способ решить эту проблему.

Для ваших начальных экспериментов будет вполне достаточно возможностей недорогого тестера. Если вы покупаете его через Интернет, то надо посмотреть, что пишут о продавце, поскольку надежность купленного недорогого товара может оказаться под большим вопросом. Вы можете приобрести этот товар в розничных магазинах, которые предлагают наилучшую цену. Не следует забывать о поиске на интернет-аукционе eBay.

Измерительный прибор может быть цифровым, но не следует забывать и об устаревшем аналоговом приборе со стрелкой, которая перемещается вдоль установленной шкалы с нанесенными на нее делениями. В этой книге предполагается, что вы пользуетесь прибором с цифровым дисплеем.

Я полагаю, что вы не станете покупать прибор с автоматической настройкой диапазона измерения. «Автоматическое изменение диапазона» звучит, как нечто полезное, например, когда вы хотите проверить батарейку напряжением 9 В, то такой прибор сам определит, что вы не пытаетесь измерить напряжением величиной в сотни вольт, а также величиной доли вольт. Проблема состоит в том, что это может стать причиной совершения вами ошибок. А что если батарейка уже почти разряжена? Тогда при измерении вы можете получить в результате доли вольт, не понимая, что вы на самом деле меряете. Единственная выводимая информация, на которую при этом можно легко не обратить внимание, это небольшая буква «m», которая в данном случае будет указывать на «милливольты» и будет находиться на дисплее мультиметра справа от больших цифр.

Если же у вас прибор с ручным выбором диапазона измерения, а источник измеряемого напряжения имеет напряжение за пределами установленного диапазона, то мультиметр будет информировать вас о том, что вы делаете ошибку. Я предпочитаю именно этот вариант. Кроме того, меня раздражает то время, которое тратится прибором для срабатывания функции автоматического определения диапазона при каждом выполнении измерения. Однако все это относится к индивидуальным предпочтениям.

На рис. 1.5–1.7 приведены примеры некоторых мультиметров.

Рис. 1.5. На моем собственном любимом мультиметре вы можете заметить следы износа и даже царапины. У него есть все необходимые основные функции, и он может измерять емкость (диапазоны обозначены буквой «F»). Кроме того, с его помощью можно проверить исправность транзисторов. Однако при работе с этим мультиметром диапазоны измерения надо устанавливать вручную

Рис. 1.6. Мультиметр RadioShack из среднего ценового диапазона, который имеет все основные функции; однако имеется двойное назначение каждой позиции дискового переключателя, уточняемое с помощью кнопки SELECT, что, безусловно, приводит к некоторым трудностям. Тем не менее этот прибор имеет автоматическое определение диапазона измерения

Рис. 1.7. Мультиметр, произведенный компанией Extech, имеет автоматическое определение диапазона измерения, обладает всеми основными функциями. Кроме того, в приборе имеется датчик температуры, который может быть полезен для определения температуры разогрева некоторых компонентов, например блоков питания

Расходуемые материалы

Батарейки

Батарейка типа «Крона» с напряжением 9 В. Количество — 1 шт.

Батарейка типа АА с напряжением 1,5 В. Количество — 6 шт.

Батарейки должны быть щелочными — они не создадут нам проблем при их утилизации, поскольку некоторые из них мы можем вывести из строя. Вы должны категорически отказаться от использования аккумуляторных батареек в экспериментах 1 и 2.

Держатели для батареек и разъемы

Разъем для подключения 9-вольтовой батарейки типа «Крона» с припаянными проводами (рис. 1.8). Количество — 1 шт. Номер детали 270–325 от RadioShack или аналогичные ей. Подойдет любой аналогичный разъем с присоединенными к нему проводами.

Рис. 1.8. Разъем для подключения батарейки типа «Крона» напряжением 9 В

Держатель для одной батарейки типа АА с присоединенными к нему проводами (рис. 1.9).

Рис. 1.9. Держатель для одной батарейки размера АА с присоединенными проводами

Количество — 1 шт. Номер детали 270–401 RadioShack или номер 12BH410-GR в каталоге на сайте компании Mouser Еlectronics или аналогичные им; подойдет любой держатель для одной батарейки с присоединенными проводами. Держатель для четырех батареек типа АА с присоединенными проводами (рис. 1.10). Количество — 1 шт. Номер BH-342 в каталоге All Electronics или номер 270–391 компании RadioShack или аналогичные им.

Рис. 1.10. Держатель для четырех батареек типа АА, которые должны быть подключены последовательно, создавая источник с напряжением 6 В

Зажимы типа «крокодил»

Зажимы типа «крокодил» с виниловой изоляцией (красные и черные). Количество — не менее 8 шт. По каталогу All Electronics номер ALG-28 или номер детали RadioShack — 270–1545 или аналогичные им (рис. 1.11).

Рис. 1.11. Зажимы типа «крокодил» с виниловой цветной изоляцией, которая уменьшает вероятность случайного возникновения короткого замыкания

Компоненты

Вы можете не знать для чего предназначены некоторые из этих деталей или что они делают. Поэтому пока обращайте внимание только на номера деталей и описания, а также на их соответствие тем деталям, которые изображены на фотографиях, приведенных в данной книге. В процессе изучения с помощью открытий смысл всех этих деталей очень скоро станет вам понятен.

Предохранители

Автомобильные с ножевыми контактами, с минилезвиями, на 3 А. Количество — 3 шт. Номер детали RadioShack — 270–1089 или деталь Bussmann — ATM-3, которые доступны у таких поставщиков, как, например, AutoZone (рис. 1.12). Подойдут и аналогичные им, однако предохранители с ножевыми контактами легче захватывать «крокодилами», чем предохранители круглого типа.

Рис. 1.12. Предохранитель номиналом 3 А, используемый в автомобильной промышленности; на рисунке показан в увеличенном масштабе

Потенциометры

С возможностью крепления на панели, роторного типа, однооборотные, с линейным изменением сопротивления, номиналом 2 кОм, мощностью не менее 0,1 Вт. Количество — 2 шт. Деталь Alpha — RV170F-10–15R1-B23 или деталь BI Technologies — P160KNPD-2QC25B2K по каталогу компании Mouser Еlectronics или других поставщиков компонентов (рис. 1.13).

Подойдут и аналогичные этим компоненты. Обозначение с отметкой «Ватт» (Ватты) означает максимальную мощность, которую может рассеять данный компонент. Вам не понадобятся потенциометры мощностью более 0,5 Вт.

Рис. 1.13. Потенциометры продаются в разнообразном исполнении по форме и размеру, с различной длиной осей для разного типа ручек. Для наших целей годится любая форма, но с потенциометрами больших размеров легче обращаться

Резисторы

Набор резисторов мощностью минимум 0,25 Вт, различного номинала, но обязательно должны быть в наличии сопротивлением 470 Ом, 1 кОм и 2 кОм или 2,2 кОм.

Количество — не менее 100 шт., RadioShack номер детали 271–312.

Можно поискать в Интернете на аукционе eBay с запросом «resistor assorted» (резисторы различного номинала).

Светоизлучающие диоды (светодиоды)

Светодиоды (LED — light-emitting diodes) любого размера или цвета (рис. 1.14 и 1.15). Количество — 10 шт. Номер детали RadioShack — 276–1622 или All Spectrum Electronics — K/LED1 в каталоге на сайте компании Mouser Еlectronics.

Подойдут и аналогичные им компоненты. Для первых экспериментов пригодятся любые светодиоды.

Рис. 1.14. Типичный светодиод диаметром 5 мм

Рис. 1.15. Светодиод большого размера (диаметром 10 мм) обладает большой яркостью свечения, которая в данном случае не нужна, и к тому же такой светодиод стоит дороже. В принципе для большинства экспериментов, приведенных в этой книге, можно купить любые светодиоды, которые вам больше понравятся

Эксперимент 1. ПРОВЕРЬТЕ НАПРЯЖЕНИЕ НА ВКУС!

Можно ли ощутить на вкус электричество? Наверное — нет, но в данном случае, похоже, что вы это сможете сделать.

Вам понадобятся:

• батарейка типа «Крона» с напряжением 9 В;

• разъем для подключения батарейки;

• мультиметр.

Порядок действий

Смочите слюной ваш язык и коснитесь его кончиком металлических контактов 9-вольтовой батарейки. Резкое быстрое покалывание, которое вы почувствуете, будет связано с потоком электрических зарядов, перемещающихся от одного вывода батарейки к другому (рис. 1.16) по влаге, которой смочен ваш язык.

Поскольку кожа вашего языка очень тонкая (это практически слизистая мембрана) и нервы расположены очень близко к его поверхности, вы можете очень легко ощутить этот поток.

Рис. 1.16. Шаг 1 в процессе обучения с помощью открытий: тестирование 9-вольтовой батарейки с помощью языка

Не более 9 В!

Батарейка с напряжением 9 В не представляет для вас какой-либо угрозы. Но не пытайтесь повторять этот эксперимент с батарейкой с более высоким напряжением или батарейкой большего размера, которая в состоянии поддерживать силу тока большой величины. Также, если у вас есть металлические коронки на зубах, то будьте очень внимательны, чтобы не коснуться их контактами батарейки.

После этого высуньте ваш язык, очень тщательно протрите его кончик салфеткой и повторите эксперимент, не допуская повторного увлажнения языка. Теперь покалывание уменьшится.

Приборы и инструменты

Выполнение настройки вашего тестера

Прочитайте инструкции, которые имеются в комплекте поставки вашего мультиметра, чтобы определить нужно ли в него установить питающую батарейку или же он куплен с уже установленной батарейкой.

Большинство приборов имеют съемные измерительные провода, известные еще, как измерительные щупы или просто щупы.

Кроме того, многие приборы имеют три гнезда на передней панели; крайнее левое обычно резервируется для измерения больших значений токов. В данном случае это гнездо нам не понадобится.

Измерительные провода обычно бывают черного и красного цвета (рис. 1.17). Вилка черного щупа вставляется в гнездо с отметкой «COM» или «Common» (общий). Вилка красного провода вставляется в гнездо с отметкой «V» или «volts» (вольты) (рис. 1.18).

Рис. 1.17. Вилка черного измерительного щупа вставляется в общее гнездо «COM» (Common), а вилка красного — в гнездо, которое обычно является самым правым гнездом мультиметра

Рис. 1.18. Чтобы измерить сопротивление и напряжение, нужно вставить черный измерительный провод в гнездо «COM», а красный в гнездо «V». Почти все мультиметры имеют отдельное гнездо, в которое вставляют красный измерительный провод только при необходимости выполнить измерение силы тока большой величины в амперах, но мы познакомимся с этой процедурой позднее

Другие концы измерительных проводов имеют металлические острия, которые называют иглами щупа или наконечниками щупа, которыми надо касаться компонентов при выполнении электрических измерений. Наконечники щупа предназначены для измерения электрических параметров; они не являются источниками большого электрического заряда. Поэтому они не могут нанести вам какую-нибудь травму, если только вы не поранитесь об их кончики.

Если ваш мультиметр не имеет функции автоматического выбора диапазона измерений, то каждая позиция дискового переключателя режимов и диапазонов измерения соответствует определенному числу. Это число означает «не больше чем». Например, вы хотите проверить напряжение батарейки номиналом 6 В, а у переключателя диапазонов в разделе измерения напряжения «V» имеется позиция 2 и следующая за ней позиция 20 (см. рис. 1.5), позиция 2 означает, что «измеряемое напряжение не должно быть больше 2 вольт». Поэтому в данной ситуации вам надо переключиться на следующую позицию, которая означает, что «измеряемое напряжение не должно быть более 20 вольт».

Если же вы сделали ошибку и пытаетесь выполнить какое-либо неправильное измерение, то тестер отобразит сообщение об ошибке, например, «E» (error) или «L» (lapse). Измените положение переключателя и выполните измерение снова.

Омы

Мы измеряем расстояние в милях или километрах, вес в фунтах или килограммах, температуру в градусах Фаренгейта или Цельсия, а электрическое сопротивление в омах. Ом является международной единицей измерения (входит в систему СИ).

В международном обозначении сопротивления в омах используется греческая буква омега — «Ω», как это показано на рис. 1.19–1.20, а в русском обозначении «Ом». Буква «K» (или альтернативное обозначение «KΩ» соответственно в русском обозначении «кОм») означает килоом, что равно 1000 Ом (табл. 1.1).

Буква «M» (или «МΩ» — в русском обозначении «МОм») означает мегаом, что равно 1 000 000 Ом.

Рис. 1.19. Греческая буква омега используется в качестве международного обозначения сопротивления в омах

Рис. 1.20. Вы можете встретить различные виды изображения данного символа

Материал, о котором известно, что он обладает очень большим сопротивлением, называют изолятором.

Большинство пластмасс и синтетических материалов, включая цветное покрытие проводов, являются изоляторами.

А материал, который имеет очень низкое сопротивление, называют проводником.

Такие металлы, как медь, алюминий, серебро и золото, являются отличными проводниками.

Порядок действий при измерении сопротивления

Мы собираемся использовать мультиметр для определения сопротивления вашего языка. Сначала переключите прибор в режим измерения сопротивления. Если у него есть функция автоматического определения диапазона измерения, то вы увидите, что он отображает букву «K», что означает килоомы, или букву «М», что означает мегаомы. Если же вы должны установить диапазон вручную, то начинать нужно со значения не менее 100 000 Ом (100 кОм). Примеры выбора режима и диапазона измерения показаны на рис. 1.21.

Рис. 1.21. Чтобы измерить сопротивление в омах, нужно повернуть переключатель режимов в положение для измерения сопротивления. На мультиметре этот режим обозначен греческой буквой омега — Ω. При использовании прибора с функцией автоматического выбора диапазона измерения (а и б) вы можете несколько раз нажать кнопку Range (диапазон) (см. рис. 1.6–1.7) для отображения различных диапазонов измерения сопротивления или просто прикоснуться концами измерительного щупа к резистору и дождаться пока прибор не выберет диапазон автоматически. В мультиметре с ручным выбором диапазона измерения (в) требуется установить переключатель диапазонов на соответствующее значение. Чтобы измерить сопротивление кожи вы должны установить диапазон «100K» или больше. Если же вам не удалось установить нужный диапазон, то следует попробовать другой

Коснитесь концами измерительных щупов вашего языка в точках, расстояние между которыми будет около одного дюйма (25,4 мм). Посмотрите на результат измерения, он должен быть около 50 кОм. Затем отложите измерительные щупы, высуньте язык и тщательно протрите его насухо. Не допуская повторного увлажнения языка, повторите тест, прибор в этом случае должен показать более высокое значение. Наконец, прикоснитесь концами измерительных щупов к вашей руке или кисти: вы можете вообще не получить каких-либо результатов до тех пор, пока не увлажните кожу руки.

В 9-вольтовой батарейке содержатся химические вещества, которые освобождают электроны (частицы-носители электрического заряда), создающие в результате химической реакции внутри корпуса батарейки ток от одной клеммы к другой. Для простоты внутреннее устройство батарейки можно представить в виде двух водяных баков, один из которых полный, а другой — пустой (рис. 1.22). Если их соединить трубой, то поток воды начнет перетекать из одного в другой до тех пор, пока уровень воды не выровняется. Аналогичным образом, как только вы между двумя выводами батарейки подключаете какую-либо цепь для протекания электрического тока, создается поток электронов между полюсами, даже если этой цепью является всего лишь влажный кончик вашего языка.

Поток электронов может легче проходить через одни проводящие среды (как например, мокрый язык) по сравнению с другими (например, сухой кончик языка).

Рис. 1.22. Представьте внутреннее устройство батарейки в виде двух цилиндрических баков: один из них заполнен водой, а другой пустой. Откройте вентиль соединительной трубки между ними и поток воды будет проходить по ней до тех пор, пока уровни в обеих баках не сравняются. Чем меньшее сопротивление испытывает вода при перетекании, тем мощнее будет поток

Примечание

Когда ваша кожа увлажнена (например, вашим потом), ее электрическое сопротивление уменьшается. Этот принцип используется в детекторе лжи, поскольку когда кто-либо лжет, вследствие стресса у него начинает выступать пот.

Человек, который открыл сопротивление

Георг Симон Ом, изображенный на рис. 1.23, родился в Баварии в 1787 г. И работал в безвестности большую часть своей жизни. Он изучал природу электричества, используя металлическую проволоку, которую сделал для себя сам (вы не смогли бы спуститься в подвал дома для того, чтобы достать моток проволоки в начале 1800-х годов).

Рис. 1.23. Георг Симон Ом после награждения за свою новаторскую работу, большую часть которой он выполнил в относительной безвестности

Несмотря на свои ограниченные ресурсы и недостаточные математические способности, Ом в 1827 г. оказался в состоянии доказать, что электрическое сопротивление проводника, например меди, имеет прямо пропорциональную зависимость от поперечного сечения этого проводника, а ток, который протекает через него, пропорционален напряжению, приложенному к нему при постоянной температуре. Через 14 лет Королевское научное общество Великобритании в Лондоне окончательно признало значение его вклада и удостоило его своей высшей наградой — медалью Копли (Copley Medal). Сегодня это открытие известно, как закон Ома.

Дальнейшие исследования

Присоедините разъем для подключения батарейки (он был показан ранее на рис. 1.8) к 9-вольтовой батарейке типа «Крона». Возьмите два провода, которые присоединены к контактам разъема, и держите их таким образом, чтобы оголенные концы проводов находились всего лишь в нескольких миллиметрах друг от друга. Коснитесь ими вашего языка. Затем увеличьте расстояние между проводами до нескольких дюймов и коснитесь языка снова (рис. 1.24). Заметили разницу?

Используя мультиметр, измерьте электрическое сопротивление вашего языка, на этот раз изменяя расстояние между двумя наконечниками измерительных щупов. Когда электрический ток преодолевает меньшее расстояние, то он встречает на своем пути меньшее сопротивление. В результате сила тока (количество переносимого заряда в единицу времени) возрастает. Вы можете попытаться провести похожий эксперимент с вашей рукой, как это показано на рис. 1.25.

Рис. 1.24. Изменяя опыт определения тока с помощью языка, можно показать, что чем меньше расстояние между проводами источника, тем меньше сопротивление языка и соответственно тем больше электрический ток, что чувствуется по росту болевого ощущения

Рис. 1.25. Смочите вашу кожу перед тем, как пытаться измерить ее сопротивление. Вы должны обнаружить, что сопротивление увеличивается по мере удаления друг от друга концов измерительных щупов. Сопротивление будет возрастать пропорционально этому расстоянию

Попробуйте с помощью мультиметра измерить сопротивление воды. Растворите некоторое количество соли в воде и выполните свой опыт снова. Теперь попытайтесь измерить напряжение в дистиллированной воде (в чистом стакане).

Мир вокруг вас полон материалов, которые проводят электричество с различной степенью сопротивления.

Наведение порядка и повторное использование компонентов

В ходе этого эксперимента ваша батарейка не должна быть повреждена или в значительной степени разряжена. Вы, разумеется, можете использовать ее снова. После выполнения всех опытов не забудьте выключить ваш мультиметр.

Эксперимент 2. ДАВАЙТЕ СОЖЖЕМ БАТАРЕЙКУ!

Чтобы лучше понять, что такое электрическая энергия, вы сделаете то, что в большинстве книг рекомендуется не делать. Вы закоротите батарейку. Закоротить это значит непосредственно, накоротко, соединить два вывода источника напряжения.

Короткие замыкания

Короткие замыкания могут быть очень опасными! Не следует замыкать накоротко контакты сетевой розетки в вашем доме! Это приведет к громкому хлопку, яркой вспышке, а провод или инструмент, который вы использовали бы для этой цели, будут расплавлены и разлетающиеся частицы расплавленного металла могут стать причиной ожога или повреждения глаз.

Если вы закоротили автомобильный аккумулятор, то сила тока будет настолько большой, что батарея может даже взорваться, выплеснув на вас кислоту (рис. 1.26).

Литиевые батарейки тоже опасны в этом смысле. Никогда не следует закорачивать литиевую батарейку! Это может привести к возникновению пожара и обжечь вас (рис. 1.27).

Для этого эксперимента следует использовать только щелочную батарейку, причем только одну и типа АА (рис. 1.28). Вам следует надеть защитные очки на тот случай, если у вас окажется неисправная батарейка.

Рис. 1.26. Всякий, кто ронял разводной ключ на оголенные клеммы аккумуляторной батареи автомобиля, скажет вам, что короткое замыкание может быть даже очень мощным при «всего лишь» 12 В

Рис. 1.27. Низкое внутреннее сопротивление литиевой батарейки (которая часто используется в ноутбуках) при замыкании приводит к достижению максимального значения тока с непредсказуемыми результатами. Никогда не теряйте бдительности вблизи литиевых батареек

Рис. 1.28. Закорачивание щелочной батарейки может быть безопасным, если вы будете точно следовать приведенным далее указаниям. Даже в этом случае батарейка может стать слишком горячей, что касание к ней может вызвать неприятные ощущения. Обращаю ваше внимание на то, что в эксперименте не следует использовать аккумуляторы любого типа!

Вам понадобятся:

• батарейка типа АА напряжением 1,5 В;

• держатель для одной батарейки;

• предохранитель на 3 А;

• защитные очки (для этой цели подойдут обычные очки или солнечные);

•зажимы типа «крокодил».

Порядок действий

Возьмите щелочную батарейку. Обращаю внимание, что в эксперименте не следует использовать какой-либо аккумулятор!

Вставьте батарейку в держатель для одной батарейки с двумя тонкими изолированными проводами, отходящими от него, как это показано на рис. 1.28. В данном случае не следует применять держатель какого-либо другого типа.

Используя зажим типа «крокодил», соедините очищенные от изоляции концы проводов так, как показано на рис. 1.28. При этом не возникнет искры, поскольку вы используете только низковольтную батарейку с напряжением 1,5 В. Подождите одну минуту, и вы обнаружите, что провода разогрелись. Подождите еще минуту, и батарейка тоже станет горячей.

Тепло создается за счет электрического тока, проходящего по проводам и через электролит (проводящую жидкость) внутри батарейки. Если вы когда-либо пользовались ручным насосом для накачивания воздуха в шины велосипеда, то вы должны знать, что насос при этом разогревается. Электричество во многом ведет себя аналогичным образом. Вы можете представить электрический ток в виде совокупности частиц (электронов), которые делают провод горячим в процессе того, как они «проталкиваются» через провод. Эта аналогия неидеальна, но она достаточно точно соответствует нашим задачам.

Химические реакции внутри батарейки создают некоторое «электрическое давление». Разумеется, правильным наименованием для этого давления будет слово напряжение, которое измеряется в вольтах в честь Алессандро Вольта, одного из первооткрывателей электричества.

Вернемся к «водяной» аналогии. Высота уровня воды в баке пропорциональна давлению воды, и ее можно сравнить с электрическим напряжением (рис. 1.29).

Но вольты это всего лишь половина истории. Когда поток электронов проходит через провод, то его называют током и меряют в амперах — это название введено в честь еще одного первооткрывателя электричества Андре-Мари Ампера. Этот поток обычно называют силой тока. Это тот самый ток (поток зарядов в единицу времени, выраженный в амперах), который приводит к тому, что происходит выделение тепла.

Рис. 1.29. Представим напряжение давлением, а электрический ток в амперах — потоком воды

Почему ваш язык не разогревается?

Когда вы языком касались контактов 9-вольтовой батарейки, то чувствовали некоторое покалывание, но ощутимого тепла не возникало. Когда вы закоротили батарейку, то происходит выделение какого-то количества тепла даже при использовании пониженного напряжения. Как вы можете это объяснить?

Электрическое сопротивление вашего языка достаточно высоко, что уменьшает поток электронов. Сопротивление провода, напротив, очень низкое, поэтому, как только провода подключаются к выводам батарейки, ток, проходящий по ним, будет существенно больше, что и приводит к выделению тепла. Если все остальные факторы остаются постоянными:

• Меньшее сопротивление приводит к протеканию большего тока (рис. 1.30).

Рис. 1.30. Чем больше результирующее значение сопротивления, тем меньше поток — но если вы увеличиваете давление, то вы можете преодолеть сопротивление и создать больший по величине поток

• Тепло, создаваемое электрическим током, пропорционально количеству электричества (заряду), который перетек.

Далее приведены некоторые основные положения:

• Сила тока (поток электричества в секунду) измеряется в амперах.

• Напряжение, которое приводит к созданию тока, измеряется в вольтах.

• Сопротивление току измеряется в омах.

• Большее сопротивление ограничивает ток.

• Более высокое напряжение приводит к преодолению сопротивления и повышению силы тока.

Если вам хочется знать точное значение электрического тока между выводами батарейки, когда вы закорачиваете ее, то это относится к числу вопросов, на которые дать ответ достаточно трудно.

Если же вы для измерения попытаетесь использовать мультиметр, то вы будете нести ответственность за перегорание предохранителя внутри этого прибора. Но при этом вы можете использовать имеющийся у вас автомобильный предохранитель на 3 А, который не жалко и сжечь, поскольку он достаточно дешевый.

Однако сначала надо тщательно проверить предохранитель, используя хотя бы увеличительное стекло, если конечно оно у вас есть. При этом вы должны увидеть тонкую S-образную проволоку в прозрачном окошке в центре предохранителя. Эта буква «S» является тонкой металлической проволокой, которая может легко расплавиться при токе, превышающем номинальное значение предохранителя.

Извлеките из держателя батарейку, которую вы немногим ранее закорачивали. Она теперь не пригодна ни для чего, и должна быть утилизирована, если это возможно. Установите свежую батарейку в держатель и подсоедините предохранитель так, как это показано на рис. 1.31, а затем понаблюдайте за ним. Вы должны в центре предохранителя заметить перегорание проволочки в форме буквы «S», где металл будет расплавлен почти мгновенно. На рис. 1.32 показан предохранитель до его подключения, а на рис. 1.33 — перегоревший. Это объясняет то, каким образом работает предохранитель: он расплавятся, чтобы защитить остальную цепь. Этот небольшой разрыв в центре предохранителя прекращает протекание электрического тока.

Рис. 1.31. Когда вы присоедините оба провода к предохранителю, то маленький проволочный его элемент в форме буквы «S» будет почти мгновенно расплавлен

Рис. 1.32. Целый автомобильный предохранитель номиналом 3 А до проведения опыта

Рис. 1.33. Тот же самый предохранитель после того, как он был расплавлен электрическим током

Изобретатель батарейки

Алессандро Вольта (рис. 1.34) родился в Италии в 1745 году задолго до того, как наука стала делиться на различные отрасли. После изучения химии (он открыл метан в 1776 году) он стал профессором физики и стал интересоваться так называемым гальваническим откликом, который заключался в том, что нога лягушки начинала дергаться под воздействием удара статического электричества.

Используя стакан для вина, заполненный соленой водой, Вольта продемонстрировал, что химическая реакция между двумя электродами, один из которых был сделан из меди, а другой из цинка, будет приводить к возникновению постоянного электрического тока. В 1800 году он улучшил свою конструкцию, выполнив ее в виде пластин из меди и цинка, разделенных картоном, смоченным в соленой воде. Эта «вольтова стопка» стала первой электрической батареей.

Рис. 1.34. Алессандро Вольта открыл, что химические реакции могут создавать электрический ток

Основные сведения о вольтах

Электрическое напряжение измеряется в вольтах. Вольт является международной единицей измерения (входит в систему СИ). Один милливольт это 1/1000 вольта (табл. 1.2).

Основные сведения об амперах

Мы измеряем электрический ток в амперах. Ампер — это международная единица, которая очень часто имеет такое международное обозначение, как «A». Один миллиампер это 1/1000 ампера (табл. 1.3).

Постоянный и переменный ток

Электрический ток, который вы получаете с помощью батарейки, называется постоянным током и в английской литературе обозначается, как DC (direct current).

Как и поток воды из крана постоянный ток это поток электрических зарядов, который движется в одном направлении. Ток, который имеется в проводе под напряжением, подключенном к сетевой розетке в вашем доме, существенно отличается. Он меняет свое направление от положительного полюса к отрицательному около 50 раз в секунду (в Великобритании и в некоторых других странах эта величина составляет 60 раз в секунду). Этот ток известен, как переменный ток и обозначается в английской литературе, как AC (alternating current), и больше похож на пульсирующий поток воды, который вы можете наблюдать в мощном душе.

Переменный ток очень важен при осуществлении некоторых задач, например при передаче электрического напряжения на большие расстояния. Переменный ток также используется при подключении двигателей и различного домашнего оборудования. Внешний вид сетевой розетки, используемой в США, приведен на рис. 1.35. В некоторых других странах, например в Японии, также используются розетки того же типа, что и в США.

Рис. 1.35. Этот тип сетевой розетки можно видеть в Северной Америке, Южной Америке, Японии и некоторых других странах. Европейские розетки выглядят несколько иначе, но принцип их конструкции является аналогичным. Контакт «А» это контакт, который находится под напряжением и называется «фазой», он подает напряжение, которое меняется от положительного до отрицательного значения относительно потенциала контакта «В», который называется «нейтралью» или «нулем». Если в каком-либо домашнем приборе возникает неисправность, например появление фазы на корпусе, то можно защитить от этого, отведя это напряжение через контакт «С» на землю

В большей части своей книги я собираюсь говорить о постоянном напряжении по двум причинам: во-первых, большинство простейших электронных схем в качестве источников напряжения используют источники постоянного тока, а, во-вторых, его поведение гораздо легче понять.

Я не хочу больше повторять, что я использую источник постоянного тока. Просто предполагается, что везде используется именно постоянный ток, за исключением специально оговоренных случаев.

Отец электромагнетизма

Родившийся в 1775 году во Франции, Андре-Мари Ампер (рис. 1.36) был математически одаренным ребенком, который стал преподавателем естественных наук, несмотря на то, что большую часть своих знаний он приобрел самостоятельно — в лаборатории своего отца. Его наиболее известной работой была разработанная им в 1820 году теория электромагнетизма, которая позволяет объяснить, что источником магнитного поля является движущийся электрический заряд, т. е. электрический ток. Он также построил первый прибор для измерения слабого электрического тока (сейчас этот прибор известен, как гальванометр) и открыл такой элемент, как фтор.

Рис. 1.36. Андре-Мари Ампер обнаружил, что электрический ток, протекающий по проводу, создает магнитное поле вокруг него. Он использовал этот принцип для того, чтобы создать первый надежный способ измерения того, что теперь известно, как сила тока

Наведение порядка и повторное использование компонентов

Первая батарейка типа AA, которая была закорочена и приведена в неисправное состояние до такой степени, что ее невозможно отремонтировать. Вы должны ее утилизировать. Выбрасывать батарейку в мусорное ведро не представляется разумным решением, поскольку в батарейке содержатся тяжелые металлы, которые будут пагубно влиять на экосистему. Возможно, в вашей области или городе осуществляется утилизация батареек в соответствии с локально действующей схемой. (Например, в штате Калифорния в США существует закон, требующий утилизации почти всех батареек). Вы можете изучить ваши местные законы для получения более подробной информации.

Перегоревший предохранитель не может быть использован повторно, поэтому его следует выбросить.

Вторая батарейка, которая была защищена предохранителем, должна находиться в исправном состоянии. Кроме этой батарейки повторно можно использовать и держатель для нее.

Эксперимент 3. ВАША ПЕРВАЯ СХЕМА

Теперь настало время заставить электричество сделать что-нибудь такое, что может принести какую-либо пользу. Для этой цели мы будем использовать компоненты под названием резисторы и светодиоды.

Вам понадобятся:

• батарейка типа АА с напряжением 1,5 В. Количество — 4 шт.;

• держатель для четырех батареек. Количество — 1 шт.;

• резисторы: 470 Ом, 1 кОм, 2 кОм или 2,2 кОм (номинал 2,2 кОм встречается гораздо чаще, чем 2 кОм, и также может использоваться в данном эксперименте). Количество — по одному резистору каждого номинала;

• светодиод любого типа. Количество — 1 шт.;

• зажимы типа «крокодил». Количество — 3 шт.

Предварительная подготовка

Наступило время познакомиться с одним из самых фундаментальных компонентов, который будет использоваться в электронных схемах, — обычным резистором (resistor). Как указывает его наименование, он создает сопротивление электрическому току. Как вы уже можете предположить, его величина измеряется в омах.

Если вы приобрели недорогой набор резисторов на распродаже, то вы можете не найти ничего такого, что могло бы указать на величину их сопротивлений. Это ничего; мы можем измерить их достаточно легко. На самом деле даже, если они имеют четкую маркировку, то я все равно хочу, чтобы вы сами проверили их значения самостоятельно. Вы можете это сделать двумя способами.

• Применив ваш мультиметр. Это отличная практика для понимания тех цифр, которые отображаются мультиметром.

• Изучив цветовую кодировку, которая нанесена на большинство резисторов (для получения дополнительной информации см. разд. «Фундаментальные сведения — Расшифровка маркировки резисторов»).

После проверки значений сопротивлений неплохо было бы выполнить сортировку, разложив их по маленьким пластмассовым коробочкам с нанесенными на них номиналами. Мне лично нравятся коробки, которые продаются в сети хозяйственных супермаркетов Michaels, но вы можете найти любые другие, которые вас устроят.

Расшифровка маркировки резисторов

На некоторых резисторах их номинал сопротивления указывается цифрами, которые напечатаны достаточно мелким шрифтом (рис. 1.37). Эти значения можно без проблем прочитать с помощью увеличительной лупы. Однако в большинстве случаев в современных резисторах применяется маркировка с использованием цветных полосок.

Рис. 1.37. Некоторые современные резисторы имеют нанесенные на их цифровые значения сопротивления, хотя вам для их чтения может потребоваться лупа. Этот резистор номиналом 15K (15 кОм) имеет длину менее половины дюйма (около 12 мм)

Порядок действий для определения номинала при цветовой маркировке следующий: во-первых, следует исключить из рассмотрения цвет корпуса резистора. Во-вторых, нужно найти серебряную или золотую полоску. Если вы ее найдете, то поверните резистор таким образом, чтобы эта полоска находилась с правой стороны. Серебряный цвет означает, что величина сопротивления резистора выполнена с точностью в пределах 10 %, а золотой цвет означает, что — в пределах 5 %.

Если же вы не можете найти серебряную или золотую полоску, то надо повернуть резистор таким образом, чтобы группа полосок находилась с левой стороны. Вы теперь должны обратить внимание на три цветных полоски, которые расположены слева. Некоторые резисторы имеют больше полосок, но мы в настоящий момент будем иметь дело только с трехцветной маркировкой (рис. 1.38, ЦВ[1] — рис. 1.38).

Рис. 1.38. Пример трех резисторов с цветовой маркировкой. Номиналы приведенных резисторов (сверху вниз) следующие: 56 000, 5600 и 560 Ом. Размер резистора указывает на мощность, которую он может выдержать; эта мощность никак не влияет на его сопротивление. Два крайних резистора меньшего размера имеют мощность 0,25 Вт, а резистор большего размера рассчитан на 1 Вт

Начиная слева, первая и вторая полоски имеют цветовую кодировку, которая соответствует приведенной далее табл. 1.4.

Третья полоска имеет другое значение: она указывает количество нулей (табл. 1.5), которое следует добавить к полученному предыдущему цифровому значению.

Следует помнить, что цветовая маркировка является вполне согласующейся и логичной, например, зеленый цвет означает либо величину 5 (для первых двух полосок), либо 5 нулей (для третьей полоски). Сама последовательность цветов совпадает с последовательностью цветов в радуге.

Таким образом, резистор с маркировкой коричневая-красная-зеленая будет иметь значение 1 2 и пять нулей, что в итоге составляет 1 200 000 Ом или 1,2 МОм (1.2 МΩ). Резистор с маркировкой оранжевый-оранжевый-оранжевый будет иметь значение 3 3 и три нуля, что в итоге составляет 33 000 Ом или 33 кОм (33 KΩ). А резистор с маркировкой коричневая-черная-красная будет иметь значение 1 0 и два дополнительных нуля, что составляет в сумме 1000 Ом или 1 кОм (1 KΩ). На рис. 1.39 (ЦВ-рис. 1.39) приведены некоторые другие примеры.

Рис. 1.39. Чтобы определить значение сопротивления резистора с цветовой маркировкой, сначала надо повернуть его таким образом, чтобы его серебряная или золотая полоски находились справа, а группа других полосок — слева. При этом, если смотреть на резисторы последовательно сверху вниз: первый резистор имеет сопротивление 1 2 и пять нулей или 1 200 000 Ом, что означает 1,2 МОм (1.2 МΩ). Второй резистор — 5 6 и один ноль, т. е. 560 Ом (560 Ω). Третий резистор — 4 7 и два нуля, или 4700, что означает 4,7 кОм (4.7 KΩ). Последний имеет 6 5 1 и два нуля — 65100 Ом, или иначе 65,1 кОм (65.1 KΩ)

Если на резистор нанесена группа из четырех полосок вместо трех, то первые три полоски являются цифрами, а четвертая полоска означает количество нулей. Третья цифровая полоска дает возможность указать сопротивление резистора с более высокой точностью.

Вы сбиты с толку? Абсолютно. Именно поэтому чтобы проверять значения сопротивлений резисторов лучше использовать мультиметр. Однако следует иметь в виду, что результаты измерений могут слегка отличаться от значений, которые указаны на резисторе. Это может случиться, потому что ваш прибор не является прецизионным прибором, или скорее потому, что сопротивление резистора при его изготовлении имеет некоторый разброс параметров, или же эти обе причины имеют место. Если вы обнаружили, что сопротивление отличается от указанного значения не более чем на 5 %, то для наших нужд это вполне допустимо.

Зажигаем светодиод

Теперь рассмотрим наши светодиоды. Устаревающие электрические лампы накаливания потребляют слишком большую мощность, которую к тому же в основном превращают в тепло.

Светодиоды намного «толковее»: бóльшую часть энергии они преобразуют в свет и, если их правильно использовать, они могут работать почти бесконечно!

Светодиод критичен к количеству энергии, которое он получает, а также к тому, каким образом он ее получает. Поэтому при работе со светодиодами всегда нужно руководствоваться следующими правилами:

• к более длинному выводу светодиода должно быть подключено более положительное напряжение, чем к короткому выводу;

• разность напряжений между длинным и коротким выводами не должна превышать предельного значения, заданного производителем для используемого светодиода;

• ток, проходящий через светодиод, не должен превышать предельного значения, заданного производителем.

А что будет, если вы нарушите эти правила? Отлично, давайте выясним это!

Прежде всего, следует убедиться, что у вас имеются свежие батарейки. Вы можете проверить их, выбрав на мультиметре режим измерения постоянного напряжения и коснувшись концами щупов обоих выводов каждой батарейки. Вы должны получить результат, который указывает, что каждая из них имеет напряжение, равное по меньшей мере 1,5 В.

Если полученное значение окажется несколько больше, чем это должно быть, то это нормально. Батарейка сначала выдает напряжение несколько больше номинального значения, а затем по мере использования постепенно уменьшает его величину. Батарейки также теряют свое напряжение, когда просто хранятся на полке в неподключенном состоянии.

Вставьте все 4 батарейки в держатель, проследив за тем, чтобы они были установлены правильно — все отрицательные выводы батареек должны находиться в контакте с пружинами в держателе. Используйте мультиметр, чтобы проверить напряжение на проводах, подключенных к держателю батареек. Это напряжение должно быть по меньшей мере 6 В.

Теперь надо взять резистор с сопротивлением 2 кОм. Следует помнить, что «2 кОм» означает «2000 Ом». Если же резистор имеет цветовую маркировку номинала с помощью цветных полосок, то их последовательность должна быть следующей — красная-черная-красная, что означает 2 0 и еще два нуля. Поскольку резисторы с сопротивлением 2,2 кОм встречаются в продаже гораздо чаще, чем резисторы с сопротивлением 2 кОм, то вы, разумеется, можете применить их. Эти резисторы будут иметь маркировку — красная-красная-красная.

Используя зажимы типа «крокодил», соберите цепь, которая показана на рис. 1.40 и рис. 1.41 (ЦВ-рис. 1.41). При этом вы должны заметить, что светодиод будет светить, но, к сожалению, пока очень тускло.

Рис. 1.40. Вид собранной схемы при выполнении эксперимента 3, на которой применяются резисторы с сопротивлением 470 Ом, 1 и 2 кОм. Для выполнения надежного контакта подсоедините зажимы типа «крокодил», как это показано на рисунке. Кроме того, в одном и том же месте цепи попробуйте по очереди поменять все используемые в эксперименте резисторы, наблюдая за тем, как при этом меняется свечение светодиода

Рис. 1.41. Здесь показано, как выглядит схема включения светодиода. Если при замыкании цепи вы начинаете с использования резистора с бóльшим сопротивлением, то в этом случае светодиод будет гореть, но очень тускло. Объясняется это тем, что на резисторе падает существенная часть напряжения, оставляя на светодиоде только небольшую его часть. В результате это приводит к недостаточному по величине току, проходящему через светодиод, для его яркого свечения

Теперь отключите резистор с сопротивлением 2 кОм (или 2,2 кОм) и замените его резистором с номиналом 1 кОм, который имеет цветовую маркировку — коричневая-черная-красная, что означает 1 0 и еще два нуля. После этого светодиод должен загореться более ярко.

После этого удалите резистор с номиналом 1 кОм и замените его резистором на 470 Ом, который имеет цветовую маркировку — желтая-фиолетовая-коричневая, что означает 4 7 и еще один ноль. При этом светодиод должен загореться еще ярче.

Все это выглядит очень элементарно, но при этом можно сделать один важный вывод. На резисторе падает определенный процент напряжения в цепи. С точки зрения «водяной» аналогии сопротивление резистора можно рассматривать в качестве перегиба или сужения в гибком шланге при подаче воды. Резистор с более высоким значением сопротивления обеспечивает большее падение напряжения на своих контактах, оставляя меньшее падение напряжения на светодиоде.

Наведение порядка и повторное использование компонентов

Батарейки и светодиод вполне можно использовать в следующих экспериментах. Кроме того, повторно могут быть использованы и резисторы.

Эксперимент 4. ИЗМЕНЕНИЕ НАПРЯЖЕНИЯ

В продаже имеется большое разнообразие типов и размеров потенциометров, но все они выполняют одну и ту же функцию: позволяют изменять напряжение и ток в цепи за счет изменения сопротивления. В этом эксперименте мы сможем узнать больше о напряжении, силе тока и соотношении между ними. Здесь вы также познакомитесь и научитесь читать справочные листы технических данных изделий, выпускаемых фирмами-изготовителями.

Здесь вам пригодятся:

• те же самые батарейки, держатель для батареек, зажимы типа «крокодил» и светодиод, которые вы использовали в последнем эксперименте;

• потенциометр с линейной характеристикой и номиналом 2 кОм. Количество — 2 шт. Полноразмерные потенциометры, которые выглядят так, как на рис. 1.42, встречаются реже по сравнению с более миниатюрными версиями. Я предпочитаю использовать потенциометры большего размера, поскольку с ними намного легче работать;

• один дополнительный светодиод;

• мультиметр.

Рис. 1.42. Внешний вид проволочного потенциометра

Заглянем внутрь вашего потенциометра

Первое что я хочу сделать, это познакомить вас с тем, как работает потенциометр. Это означает, что вы должны открыть его, именно поэтому в вашем списке необходимых покупок было указано приобретение двух потенциометров — на тот случай, если вы не сможете собрать первый из них снова.

Большинство потенциометров фиксируются в собранном состоянии небольшими металлическими лапками. Вы наверняка сумеете подцепить эти лапки вашими бокорезами (кусачками для проводов) или плоскогубцами, а затем отогнуть их вверх и немного в стороны. Если вы сделаете это, то потенциометр должен открыться, как это показано на рис. 1.43.

Рис. 1.43. Чтобы открыть потенциометр, сначала надо отогнуть четыре небольшие металлические лапки, расположенные по краю металлического корпуса (на нижнем рисунке видно две лапки, отогнутые наружу — одна влево и одна вправо). Внутри находится однослойная спираль из проволоки, намотанной вокруг плоской пластмассовой полоски, и пара подпружиненных контактов, которые проводят ток к нужной точке или отводят от другой нужной точки катушки при вращении оси потенциометра (показаны на верхнем рисунке). В зависимости от того, какого типа потенциометр у вас есть, относительно недорогой или более дорогой, внутри их вы можете обнаружить дорожку проводящей графитовой пленки или проволочную спираль. В любом случае используемый принцип действия будет один и тот же

Провод или проводящая пленка обладают некоторым сопротивлением (2 кОм в данном случае), а при повороте оси потенциометра обеспечивается контакт любой соответствующей точки резистивного элемента (проволочного или непроволочного) с центральным выводом потенциометра.

После разборки потенциометра вы можете попытаться собрать его снова, но если это не получится, то надо взять запасной аналогичный потенциометр.

Чтобы проверить ваш потенциометр, нужно с помощью мультиметра измерять его сопротивление в омах, обеспечивая при этом постоянный контакт измерительных щупов с выводами потенциометра и вращая его ось в одну и другую сторону, как это показано на рис. 1.44.

Рис. 1.44. При проверке потенциометра постоянно измеряйте сопротивление между двумя его выводами (один из которых должен быть обязательно средний), когда вы поворачиваете ось потенциометра то в одну, то в другую сторону

Уменьшение яркости вашего светодиода

Прежде всего, поверните ось потенциометра в крайнее положение против часовой стрелки, в противном случае вы можете сжечь ваш светодиод еще до начала эксперимента. (Крайне малое количество потенциометров увеличивают и уменьшают сопротивление другим способом по сравнению с тем, который я описываю здесь, но поскольку вы применяете потенциометр, показанный на рис. 1.42, то мое описание должно быть достаточно подробным).

После этого выполните все подключения, как это показано на рис. 1.45 и 1.46, следя за тем, чтобы не позволять металлическим частям зажимов типа «крокодил» касаться друг друга. Теперь очень медленно по часовой стрелке начните поворачивать ось потенциометра. В результате вы должны заметить, что светодиод будет светиться все ярче и ярче, и, в конце концов, вдруг погаснет. Итак, вы опытным путем увидели, как легко можно вывести из строя современную электронику? Выбросите этот светодиод. Больше он уже никогда не загорится. Замените его новым светодиодом, но теперь будьте гораздо внимательнее.

Рис. 1.45. Это вид схемы для эксперимента 4. При повороте оси потенциометра с номиналом 2 кОм сопротивление между используемыми его выводами будет меняться от 2000 до 0 Ом. Это сопротивление должно защищать светодиод от полного напряжения батарейки величиной 6 В

Рис. 1.46. Светодиод, приведенный на этой фотографии, вдруг сгорел, поскольку я излишне уменьшил сопротивление потенциометра

Для измерения напряжения в схеме, в которой используются батарейки, надо на мультиметре выбрать режим для измерения напряжения на постоянном токе — «V» и «DC», «» или «VDC», где DC (direct current) — постоянный ток, как это показано на рис. 1.47. Теперь измерительными щупами коснитесь выводов светодиода. Попытайтесь, удерживая щупы на месте, слегка повернуть ось потенциометра сначала в одну, а затем в другую сторону. Вы должны увидеть соответствующее изменение величины напряжения на выводах светодиода. Мы называем это разностью потенциалов между двумя выводами светодиода.

Рис. 1.47. В разных типах мультиметров для измерения постоянного напряжения требуются соответственно различные настройки. Так, в мультиметре с ручной установкой диапазона измерения (а) требуется установить переключатель режима работы в положение «DC», а затем с помощью дискового переключателя выбрать предельное значение напряжения, которое вы хотите измерить. В данном случае выбранное напряжение составляет 20 (поскольку значение 2 слишком мало). Использование тестера RadioShack с функцией автоматического выбора диапазона измерения требует установки переключателя в положение, например, «V» (б) или «VDC» (в) и тестер сам определит, какой диапазон использовать

Если вы вместо светодиода будете использовать устаревшую миниатюрную лампочку накаливания, то вы при измерении получите разность потенциалов, которая будет меняться в гораздо большей степени, поскольку лампочка ведет себя, как «простое» сопротивление, тогда как светодиод в некоторой степени осуществляет самонастройку, изменяя свое сопротивление в зависимости от изменения напряжения питания.

Теперь, чтобы измерить разность потенциалов между выводами потенциометра, коснитесь их измерительными щупами. Потенциометр и светодиод делят между собой все имеющееся напряжение таким образом, что когда разность потенциалов (падение напряжения) на потенциометре повышается, тогда разность потенциалов между выводами светодиода падает, и наоборот (рис. 1.48–1.50).

Рис. 1.48. Как измерять напряжение в простой цепи

Рис. 1.49. Прибор показывает значение напряжения на светодиоде

Рис. 1.50. Прибор показывает значение напряжения на потенциометре

Следует иметь в виду несколько обстоятельств.

• Если вы сложите все падения напряжения на каждом элементе цепи, то сумма будет равна тому напряжению, которое выдается батарейкой.

• При измерении напряжения вы всегда измеряете относительное напряжение между двумя точками в цепи.

• Измерительные щупы вашего прибора подсоединяйте очень осторожно, словно стетоскоп, без каких-либо нарушений или повреждений соединений в цепи.

Измерение тока

Сейчас я хочу выполнить несколько другое измерение. Я хочу измерить ток или силу тока в цепи, используя прибор, установив на нем «мА» (миллиамперы). Чтобы измерить силу тока, следует помнить, что:

• вы можете измерить ток только тогда, когда он проходит через ваш прибор;

• ваш измерительный прибор должен быть встроен в цепь;

• слишком большой ток может сжечь предохранитель внутри вашего прибора.

Следует убедиться, что на мультиметре установлен режим именно для измерения силы тока в миллиамперах (рис. 1.51–1.52, а), а не напряжения, как это было ранее. В некоторых приборах для измерения тока в миллиамперах требуется переключить одну из вилок измерительного щупа в другое гнездо — «mA» (см. рис. 1.52, б).

Рис. 1.51. Если вы попытаетесь измерить слишком большой ток, то в любом приборе обязательно должен сгореть внутренний предохранитель. В нашей цепи нет никакого риска, если вы установите регулятор потенциометра в среднее положение. Для измерения силы тока в миллиамперах выберите режим «mA» и запомните, что мультиметр при этом будет отображать значения, которые означают тысячные доли ампер

Рис. 1.52. Мультиметр с ручным выбором режима измерения такой, например, как приведенный здесь, при измерении тока в миллиамперах требует от вас переключения красного измерительного щупа в другое гнездо прибора. В большинстве современных мультиметров этого делать не нужно до тех пор, пока вам не понадобится измерять большие значения токов

Подключите ваш тестер в цепь как это показано на рис. 1.53.

Рис. 1.53. Чтобы измерить ток в амперах, как это показано на левом (а) и правом (б) рисунках, измеряемый ток должен проходить через мультиметр. Когда вы будете увеличивать сопротивление потенциометра, то это приведет к уменьшению электрического тока, а меньший ток через светодиод заставит его светиться менее ярко

Не следует поворачивать потенциометр больше чем наполовину. Сопротивление потенциометра будет защищать ваш тестер, как и светодиод. Если через тестер пропускается слишком большой ток, то вы сможете обнаружить себя выполняющим замену внутреннего предохранителя тестера.

Если вы слегка измените положение регулятора потенциометра, повернув его в одну или другую сторону, то обнаружите, что изменение сопротивления в цепи будет приводить к изменению тока. Это может объяснить, почему светодиод перегорел в предыдущем эксперименте. Слишком большой ток делает его горячим, и это тепло расплавит его изнутри, как предохранитель в приведенном ранее эксперименте 2.

Более высокое сопротивление ограничивает ток или ее величину в амперах.

Теперь встройте мультиметр в другую часть исследуемой цепи, как это показано на рис. 1.53, б. По мере поворота потенциометра вперед или назад вы будете получать точно такие же результаты, что и в схеме, приведенной на рис. 1.53. Это происходит потому, что ток во всех точках такой цепи имеет одно и то же значение. Все это именно так, поскольку у потока электронов нет никакого другого пути.

Теперь наступило время, чтобы обратиться к некоторым цифрам. Здесь осталось проверить одну последнюю вещь. Отключите светодиод и замените его резистором с сопротивлением 1 кОм, как это показано на рис. 1.54.

Общее сопротивление в цепи теперь будет равно 1 кОм плюс сопротивление потенциометра, зависящее от положения оси регулятора, в которое вы его установили. (Разумеется, мультиметр тоже имеет некоторое сопротивление, но оно настолько мало, что мы можем им пренебречь).

Рис. 1.54. Если вы вместо светодиода установите резистор, то сможете проверить, что ток, который течет в цепи, будет зависеть от общего сопротивления в цепи при условии неизменного питающего напряжения

Сначала поверните ось потенциометра до упора против часовой стрелки, и у вас получится суммарное сопротивление в цепи, равное 3 кОм. Ваш мультиметр при этом должен показать приблизительно 2 мА. Затем поверните ось потенциометра в среднее положение, и вы получите общее сопротивление в цепи порядка 2 кОм. Ток в этом случае должен быть около 3 мА. Теперь поверните ось потенциометра до упора по часовой стрелке. Общее сопротивление в цепи станет равно 1 кОм, и вы получите ток, который будет около 6 мА. Вы можете заметить, что если умножить сопротивление на силу тока, то каждый раз получится число 6 — что всего лишь означает величину напряжения, которое приложено к цепи (табл. 1.6).

Фактически мы можем сказать:

вольты = килоомы х миллиамперы.

Но подождите секунду: 1 кОм это 1000 Ом, а 1 мА это 1/1000 А. Поэтому наша формула по-настоящему должна выглядеть следующим образом:

вольты = (омы х 1000) х (амперы х 1/1000).

После сокращения числителя и знаменателя на 1000 получим:

вольты = омы х амперы.

Это известно, как закон Ома, см. далее разд. «Фундаментальные сведения — Закон Ома».

Последовательно и параллельно

Перед тем как продолжить, вы должны узнать каким образом изменяется сопротивление цепи при последовательном и параллельном подключении резисторов (рис. 1.55–1.57, ЦВ-рис. 1.55–1.57).

Рис. 1.55. К одному резистору приложено все напряжение и в соответствии с законом Ома по нему протекает ток величиной U/R = 6 В/1000 Ом = 0,006 А = 6 мА

Рис. 1.56. Когда два одинаковых резистора подключены последовательно, электрический ток сначала должен пройти через один из них, а затем только через другой, поэтому на каждом из них падает половина приложенного напряжения. Общее сопротивление теперь становится равным 2000 Ом, и в соответствии с законом Ома по цепи протекает ток величиной U/R = 6 В/2000 Ом = 0,003 А = 3 мА

Рис. 1.57. Когда два одинаковых резистора подключены параллельно, то к каждому из них приложено полное напряжение, т. е. напряжения на них составляют по 6 В. Электрический ток проходит через них одновременно, поэтому общее сопротивление становится в два раза меньше по сравнению с тем, что было. В соответствии с законом Ома по цепи проходит ток, равный U/R = 6 В/500 Ом = 0,012 А = 12 мА

Следует запомнить, что:

• при последовательном соединении резисторов они подключаются таким образом, что следуют друг за другом;

• при параллельном соединении резисторов они подключаются таким образом, что располагаются рядом бок о бок.

Когда вы последовательно подключаете два резистора одного номинала, то вы удваиваете общее сопротивление, поскольку электрический ток в данном случае преодолевает два последовательных препятствия.

Когда два резистора одного номинала подключены параллельно, то вы делите общее сопротивление на два, поскольку предоставляете электрическому току два пути, по которым он может пройти, вместо одного.

На практике нам нет необходимости устанавливать резисторы параллельно, но нам часто приходится подключать компоненты другого типа таким образом. Например, лампочки в вашем доме подключены таким образом. Поэтому очень полезно понимать, что сопротивление цепи уменьшается, если вы добавляете в нее компоненты при параллельном подключении.

Использование закона Ома

Закон Ома очень полезен. Например, он помогает нам определить безопасно ли использовать какой-либо компонент в данной цепи. Вместо того, чтобы подвергать воздействию повышенным напряжением компонент до тех пор, пока он не перегорит, мы можем предсказать, как он будет работать.

Например, вначале, когда вы поворачивали ось потенциометра, вы на самом деле не знали, как долго вы можете это делать, чтобы светодиод не вышел из строя. Поэтому было бы полезно точно знать, какое сопротивление надо подсоединить последовательно со светодиодом, чтобы адекватно защитить его, получая при этом свечение максимальной яркости.

Как читать справочные листы технических данных

Как и для большинства других случаев, ответ на этот вопрос можно найти в Интернете.

Здесь описано как можно найти справочные листы технических данных на изделия (их технические описания), выпускаемых тем или иным изготовителем (рис. 1.58).

Рис. 1.58. Типичный справочный лист технических данных, в который включены соответствующие технические характеристики изделия, в данном случае высокоэффективного светодиода в корпусе диаметром 5 мм

Во-первых, найдите компонент, который вас интересует, у поставщика, оформляющего заказы по электронной почте. Затем введите в поисковую систему Google номер детали и имя производителя.

Обычно в числе первых результатов запроса появятся справочные листы технических данных этого компонента. С использованием таких источников, как сайт компании Mouser Еlectronics, поиск осуществляется еще проще, поскольку он предоставляет прямую ссылку на справочные листы технических данных для многих изделий.

Приведем пример. Предположим, я хочу использовать красный светодиод типа TLHR5400, выпускаемый компанией Vishay Semiconductor, который стал настолько распространенным, что я могу его купить отдельно по цене $0,09 за штуку (≈2,7 руб.). Щелкните мышью по ссылке на лист технических данных, который представлен компанией Vishay Semiconductor. Почти немедленно на экране компьютера появится страница файла в формате PDF.

Этот лист технических данных для светодиодов типа TLHR, TLHG и TLHY, которые соответственно имеют свечение красного, зеленого и желтого цветов, что обозначается буквами «R», «G» и «Y» в наименовании светодиода. Пролистываю документ и нахожу таблицу «OPTICAL AND ELECTRICAL CHARACTERISTICS» (Оптические и электрические характеристики). В ней содержится информация о том, что при токе через светодиод величиной 20 мА он имеет типичное значение («ТYР.») прямого напряжения (Forward voltage) равное 2 В. Слово «MAX.» в таблице означает максимальное значение, которое составляет 3 В.

Теперь посмотрим на другой лист технических данных, поскольку все они имеют одну и ту же форму. Я выберу другой светодиод — компонент WP7113SGC компании Kingbright. Щелчок мышью по ссылке на сайте производителя и я получаю вторую страницу листа технических данных, где типичное значение прямого напряжения составляет 2,2 В, максимальное значение — 2,5 В, а максимальный прямой ток 25 мА. Кроме того, я нашел некоторую дополнительную информацию: максимально допустимое обратное напряжение — 5 В, а максимально допустимый обратный ток 10 мкА (означает микроампер, который составляет величину в 1000 раз меньше ампера). Эти данные говорят нам, что не следует прикладывать избыточное напряжение к светодиоду при подключении с обратной полярностью. Если же для светодиода превысить максимально допустимое значение обратного напряжения, то возникает опасность выхода его из строя.

Поэтому всегда старайтесь соблюдать полярность при подключении!

Компания Kingbright предоставляет сведения о том какую температуру может выдерживать светодиод: 260 °C (500 °F) в течение нескольких секунд. Это полезная информация, поскольку довольно скоро мы отложим в сторону наши зажимы типа «крокодил» и для соединения электрических компонентов будем использовать расплавленный паяльником горячий припой.

Поскольку мы уже вывели из строя батарейку, предохранитель и светодиод при выполнении всего лишь четырех экспериментов, поэтому возможно вы не удивитесь, что мы испортим, по меньшей мере, еще несколько компонентов при определении их предельных температурных значений при воздействии паяльника.

В любом случае теперь мы знаем, что необходимо для нормальной работы светодиода, и мы можем сделать все соответствующие расчеты. Если у вас при вычислении возникнут какие-либо трудности при определении места, куда нужно поставить десятичную запятую, то перед продолжением изучения книги обратитесь к разд. «Фундаментальные сведения — Положение десятичного разделителя».

Закон Ома

По причинам, о которых я расскажу чуть позже, электрический ток обычно обозначается латинской буквой «I». Буквой «U» обозначают напряжение, а буквой «R» — сопротивление, обычно представленное в омах (поскольку с использованием большинства клавиатур не так легко напечатать букву «Ω»). Используя эти символьные обозначения, вы можете написать закон Ома тремя различными способами:

U = I х R.

I = U/R.

R = U/I.

Следует помнить, что U — это разность потенциалов (напряжение) между двумя точками простой цепи, R — сопротивление в омах между двумя этими точками, а I — ток в амперах, который проходит по этой цепи между двумя точками.

Буква «I» используется потому, что сила тока измеряется согласно создаваемой током индукции (inductance), что означает способность током индуцировать (создавать) магнитное поле.

Для обозначения электрического тока гораздо меньше вопросов вызывало бы использование буквы «А», но, к сожалению, уже слишком поздно что-либо менять.

Какое напряжение падает на проводе?

Обычно, мы можем не учитывать сопротивление проводов, например, у проводов малой длины, которые соединяют сопротивления, поскольку это очевидно. Однако если вы попытаетесь пропустить ток большой величины через длинный тонкий провод, то становится важным учитывать его сопротивление.

Насколько же это важно? Чтобы определить это, мы снова можем воспользоваться законом Ома.

Предположим, что очень длинный кусок провода имеет сопротивление 0,2 Ома. Допустим по этому проводу мы хотим пропустить ток величиной 15 А. Какое по величине напряжение будет отобрано у цепи за счет его сопротивления?

Снова начинаем писать то уравнение, которое вам уже известно:

R = 0,2 Ом

I = 15 А

Мы хотим знать напряжение U, падение напряжения, для провода, поэтому мы воспользуемся законом Ома, в котором напряжение U находится в левой части уравнения:

U = I х R.

Теперь в эту формулу надо подставить значения, которые были заданы в условии:

U = 15 А х 0,2 Ом = 3 В

Три вольта это не слишком большое значение, если у вас есть источник питания высокого напряжения, но если вы используете, например, автомобильный аккумулятор с напряжением 12 В, то провод такой длины будет отбирать в цепи четверть доступного напряжения (рис. 1.59).

Рис. 1.59. Когда питание какого-либо устройства осуществляется от автомобильного аккумулятора с напряжением 12 В, сопротивление провода отнимает у цепи некоторое напряжение и рассеивает в виде тепла

Теперь вы должны понимать, почему провода в автомобилях достаточно толстые — это связано с тем, что их сопротивление должно быть гораздо меньше 0,2 Ом.

Положение десятичного разделителя[2]

Легендарный британский политик Сэр Уинстон Черчилль был знаменит тем, что жаловался на «эти чертовы точки». Он имел в виду десятичные точки. Поскольку Черчиль был министром финансов в это время и нес ответственность за все расходы государства, то его затруднения при использовании десятичных точек создавали достаточно много проблем. Тем не менее, как бы то ни было, он всегда доводил дела до конца, что наверняка будете делать и вы.

Кроме того, вы можете воспользоваться карманным калькулятором — или следующими далее двумя основными правилами.

При выполнении умножения: перемещайте десятичные запятые

Предположим. Вам надо умножить 0,04 на 0,005:

1. Переместим десятичные запятые вправо за последние цифры обоих чисел. В данном примере нам потребуется выполнить всего 5 перемещений запятой, чтобы получить числа 4 и 5.

2. Умножим числа, которые у нас получились. В данном примере: 4 х 5 = 20.

3. Запишем окончательный результат, переместив в полученном числе десятичную запятую влево на то количество перемещений запятой, которое мы сделали в первом пункте, т. е. на 5. Таким образом, мы получим: 0,00020 или 0,0002.

При выполнении деления: аннулируйте десятичные запятые

Предположим. Вам надо разделить 0,006 на 0,0002:

1. Переместите десятичные запятые вправо в обоих числах на одно и то же количество позиций, до тех пор, пока оба числа не станут больше 1. В данном случае нам надо в каждом числе переместить запятые на 4 позиции. Таким образом, мы получим, что число 60 надо разделить на 2.

2. Выполните деление. В данном случае результат будет равен 30.

Насколько большое сопротивление требуется для светодиода?

Предположим, что мы применяем светодиод производства компании Vishay Semiconductors. Не забыли его технические характеристики, которые приведены в справочном листе технических данных? Максимальное значение прямого напряжения 3 В и безопасная величина тока 20 мА.

Для повышения безопасности я собираюсь ограничиться прямым напряжением 2,5 В. Для питания у нас есть батарейка на напряжение 6 В. Вычтем 2,5 В из 6 и получим 3,5 В. Поэтому нам в данной цепи необходим резистор, падение напряжения на котором должно составлять 3,5 В, и чтобы 2,5 В осталось для светодиода.

Сила тока в такой простой цепи является одинаковой во всех ее точках. Поэтому, если мы хотим, чтобы максимальное значение тока, который протекал бы через светодиод, было 20 мА, то такой же силы ток будет протекать и через резистор.

Теперь мы можем записать то, что мы знаем о резисторе в цепи. Однако следует помнить, что все значения должны быть приведены к единицам измерения в вольтах, амперах и омах, поэтому вместо 20 мА при вычислениях надо записать 0,02 А:

U = 3,5 В (падение напряжения на резисторе)

I = 0,02 А (ток, проходящий через резистор)

Нам нужно узнать сопротивление резистора R. Поэтому мы используем вариант написания закона Ома, в котором сопротивление находится в левой части уравнения:

R = U/I.

Теперь надо подставить известные значения в формулу:

R = 3,5/0,02

Выполните вычисление сопротивления с помощью вашего карманного калькулятора, если у вас есть проблемы с определением места, куда надо поставить десятичную запятую. Вы должны получить следующий ответ:

R = 175 Ом

Итак, сопротивление 175 Ом является точным значением для резистора. Вы можете использовать резисторы со стандартным значением сопротивления 180 или даже 220 Ом, поскольку это достаточно близкие значения.

Очевидно, что резистор с сопротивлением 470 Ом, который мы использовали в эксперименте 3, был выбран со слишком большим запасом. Я предложил его именно потому, что вначале предполагалось использовать светодиод любого типа. Я рассчитал, что вне зависимости от типа используемого вами светодиода, резистор с сопротивлением 470 Ом вполне подойдет.

Наведение порядка и повторное использование

Сожженный светодиод должен быть выброшен. Все остальное можно использовать снова.

Выполняйте эти вычисление с повторением вслух

Я собираюсь вернуться к вопросу, который я задал ранее при выполнении одного из предыдущих экспериментов — «Почему ваш язык не разогревается?»

Теперь, поскольку вы уже знаете закон Ома, вы можете сформулировать свой ответ с использованием цифр. Предположим, что батарейка создает напряжение величиной 9 В, а ваш язык имеет сопротивление, равное 50 кОм, или иначе 50 000 Ом. Запишим, что вам известно:

U = 9 В

R = 50 000 Ом

Мы хотим узнать значение электрического тока, поэтому используем вариант написания закона Ома, в котором сила тока находится в левой части уравнения:

I = U/R.

Теперь надо подставить известные значения в формулу:

I = 9 В/50 000 Ом = 0,00018 А

Переместим десятичную точку на три позиции влево, чтобы получить ответ в миллиамперах:

I = 0,18 мА

Это очень маленький ток, который не будет приводить к выделению сколь-нибудь значительного количества тепла.

Что происходит, когда вы закорачиваете батарейку? Сила тока какой величины нагревает провода? Отлично, предположим, что провода имеют сопротивление величиной 0,1 Ом (возможно, оно меньше, но я хочу начать с предположения, что оно равно именно 0,1 Ом).

Запишем, что нам известно:

U = 1,5 В

R = 0,1 Ом

Как только мы пытаемся найти величину тока, мы должны использовать следующую формулу:

I = U/R.

Теперь надо подставить известные значения в формулу:

I = 1,5 В/0,1 Ом = 15 А

Это примерно в 100 000 раз большее значения тока, который проходил по поверхности вашего языка. Причем этот ток выделяет гораздо больше тепла даже при том, что используется намного меньшее напряжение.

Однако может ли такая тоненькая и маленькая батарейка в действительности создать ток величиной 15 А? Помните, что батарейка разогрелась также как и провода. Это означает для нас, что электроны при перемещении внутри батарейки также встречают некоторое сопротивление, как и при перемещении по проводам. (Иначе откуда еще может взяться тепло?) Обычно мы можем забыть о внутреннем сопротивлении батарейки, поскольку оно слишком мало. Но при высоких значениях силы тока и оно становится достаточно существенным.

Мне не очень хотелось бы закорачивать батарейку с подключением мультиметра, чтобы попытаться измерить силу тока.

Мой прибор сгорит, если проходящий через него ток будет более 10 А. Однако я могу попытаться подключать в цепь только добавочные предохранители, чтобы определить при каких значениях они будут перегорать. Когда я попробовал применить предохранитель номиналом 10 А, он не расплавился. Поэтому для используемого мною типа батарейки я совершенно уверен, что ток при коротком замыкании будет менее 10 А. Но я точно знаю, что этот ток будет больше 3 А, поскольку при попытке подключения предохранителя на 3 А он перегорел. Внутреннее сопротивление 1,5-вольтовой батарейки при коротком ее замыкании препятствует протеканию тока слишком большой величины. Именно поэтому я предупреждал, что в эксперименте нельзя использовать мощные батарейки (особенно автомобильные аккумуляторы). Мощные батареи питания имеют гораздо меньшее внутреннее сопротивление, позволяющее току достигать очень большого значения, которое соответственно приводит к выделению большого количества тепла, приводящего в конце-концов к взрыву. Автомобильные аккумуляторные батареи специально конструируют для выдачи токов в сотни ампер для проворачивания вала двигателя. Это вполне достаточная величина тока, чтобы расплавить провода и вызвать сильные ожоги. Фактически, используя автомобильный аккумулятор, вы можете выполнять сварку металлов.

Литиевые батарейки также имеют низкое внутреннее сопротивление, что делает их очень опасными при закорачивании.

Надо иметь в виду, что большой ток может быть столь же опасным, как и высокое напряжение.

Происхождение понятия мощности

Джеймс Ватт (рис. 1.60) известен как изобретатель парового двигателя. Он родился в 1736 году в Шотландии, где организовал небольшую мастерскую при Университете в Глазго и разработал эффективную конструкцию для использования пара с целью перемещения поршня в цилиндре. Финансовые проблемы и примитивное состояние технологии металлообработки отложили практическую реализацию изобретения до 1776 года.

Рис. 1.60. Джеймс Ватт, изобретение которого позволяло использовать энергию пара, сделало возможным совершить промышленную революцию. После его смерти единице измерения электрической мощности было присвоено его имя

Несмотря на трудности при получении патентов (которые могли быть выданы в то время только с помощью парламентского решения), Ватт и его партнер по бизнесу в конечном итоге заработали много денег на своих инновациях. Хотя он жил раньше основоположников электричества, в 1889 году (через 70 лет после его смерти), его имя было присвоено основной единице измерения электрической мощности, которая в электрических цепях постоянного тока может быть определена, как произведение тока в амперах на напряжение в вольтах (см. разд. «Фундаментальные сведения — Основные сведения о ваттах»).

Основные сведения о ваттах

До сих пор я ничего не говорил о единице измерения, с которой наверняка знаком каждый — это ватты.

Ватт это единица для измерения работы. Инженеры пользуются своим собственным определением работы — они говорят, что работа может быть выполнена человеком, животным или машиной, которая воздействует на что-то для преодоления механического сопротивления. Примером может служить паровой двигатель, который тянет поезд по горизонтальному пути (преодолевая трение и сопротивление воздуха), или человек, поднимающийся по лестнице (преодолевая силу тяжести).

Когда электроны прокладывают себе дорогу в цепи, они тоже преодолевают некоторое сопротивление и поэтому выполняют работу, которая может быть измерена в ваттах. Имеется очень простое определение:

ватты = вольты х амперы

Применяя обычные используемые обозначения, можно привести три формулы, которые в принципе означают одно и то же:

W = U х I.

U = W/I.

I = W/U.

Для ватт используется сокращенное международное обозначение «W», в русском обозначении «Вт». Совместно с сокращенными обозначениями ватт могут быть использованы различные приставки, такие, например, как «m» для обозначения «милли» — «mW» (в русском обозначении «мВт»), впрочем, точно такие же, как и в случае применения вольтов или ампер (табл. 1.7).

Поскольку электростанции, солнечные батареи и ветряные электростанции генерируют гораздо бóльшие значения мощности, то вы также можете встретить такие обозначения, как «киловатты» (для обозначения используется буква «K» или в русском обозначении «к») и «мегаватты» (для обозначения используется прописная буква «M», чтобы не спутать ее со строчной буквой «м», которая применяется для обозначения милливатт) (табл. 1.8).

Мощность лампочек накаливания выражается в ваттах.

В аналогичных единицах измеряется мощность стереосистемы. Ватт получил свое название в честь Джеймса Ватта, который изобрел паровой двигатель. Кстати, ватты могут быть переведены в лошадиные силы и наоборот.

Расчет мощности

Ранее я уже упоминал, что резисторы изготавливают с различными стандартными значениями мощности — 0,25 Вт, 0,5 Вт, 1 Ватт и т. д. Я советовал, чтобы вы купили резисторы мощностью 0,25 Вт или больше. Откуда я это узнал?

Давайте вернемся назад к цепи со светодиодом. Помните, мы хотели, чтобы на резисторе падало напряжение 3,5 В, а ток был бы равен 20 мА. Какое количество мощности рассеивается на этом резисторе?

Запишите, что вам известно:

U = 3,5 В (падение напряжения на резисторе)

I = 20 мА = 0,02 А (ток, протекающий через резистор)

Мы хотим узнать мощность в ваттах, поэтому используем формулу, где мощность располагается в левой части уравнения:

W = U х I.

Теперь надо подставить значения в эту формулу:

W = 3,5 В х 0,02 А = 0,07 Вт (мощность, которая рассеивается резистором)

Таким образом, мы выяснили, что используемый нами резистор мощностью 0,25 Вт (1/4 ватта) имеет почти 4-кратный запас по сравнению с действительно рассеиваемой им мощностью.

На самом деле здесь мы могли бы использовать резисторы мощностью 0,125 Вт (1/8 ватта), но для будущих экспериментов нам понадобятся резисторы мощностью 0,25 Вт. Поэтому в данном случае применяют именно такие резисторы, поскольку нет никаких ограничений для использования резистора, рассчитанного на мощность бóльшую, чем та, которая в действительности на нем рассеивается.

Эксперимент 5. ДАВАЙТЕ СДЕЛАЕМ БАТАРЕЙКУ

Много лет назад еще до возможности совершения «путешествий» по сайтам в Интернете, обмена файлами или изобретения сотовых телефонов детей строго наказывали, поскольку тогда многие из них часто развлекались, устраивая эксперименты на кухонном столе, например, такие, как изготовление примитивной батарейки путем помещения гвоздя и одноцентовой монетки в лимон. В это трудно поверить, но наверное, это правда!

Это достаточно старый опыт — но я в любом случае хочу проверить его, поскольку каждый, кто хочет ощутить природу электричества, должен знать, насколько легко получить его из предметов, которые нас постоянно окружают в жизни. Кроме того, если вы будете использовать достаточное количество лимонов, то сможете получить такое напряжение, которое даже позволит зажечь светодиод.

Основными компонентами батарейки являются два металлических электрода, погруженных в электролит. Здесь я не буду давать определения используемым терминам (они будут объяснены в следующем разд. «Теория — Природа электричества»).

Сейчас вам нужно уяснить, что лимонный сок у нас будет электролитом, а медь и цинк будут электродами. В одноцентовой монетке содержится достаточное количество меди, особенно если она относительно новая и блестит. Надо понимать, что монета не изготовлена целиком из меди, она имеет только лишь медное покрытие, что в нашем случае вполне достаточно.

Чтобы найти металлический цинк, вам надо посетить хозяйственный магазин, где нужно спросить кровельные гвозди. Эти гвозди имеют цинковое покрытие, что защищает их от коррозии.

Кроме того, можно воспользоваться небольшими металлическими кронштейнами или крепежными пластинами, которые также обычно покрыты цинком. Они должны иметь несколько приглушенный (матовый) серебряный оттенок. Если они имеют светлое покрытие, близкое к зеркальному, то скорее всего, что это никелевое покрытие.

Разрежьте лимон пополам и выберите на вашем мультиметре такой режим и предел, чтобы он мог измерять постоянное напряжение величиной до 2 В. Затем приложите один измерительный щуп к монете, а второй к кровельному гвоздю (или же какой-либо другой детали, покрытой цинком). Теперь вставьте монету и гвоздь в мякоть лимона так, чтобы они находились на максимально близком расстоянии друг от друга, но все же не касались. Вы должны обнаружить, что ваш тестер покажет напряжение примерно от 0,8 до 1 В.

Вы можете повторить эксперимент с другими предметами и жидкостями, чтобы определить какие из них дают лучший результат. Погружение гвоздя и монеты в лимонный сок, который вы отжали в стеклянный стакан или подставку для яйца, может улучшить эффективность вашей батарейки, хотя вам придется достаточно тяжело при удерживании всех этих предметов в нужном положении. В качестве замены лимонного сока могут использоваться сок грейпфрута и винограда.

Чтобы заставить светиться стандартный светодиод, вам нужно будет получить напряжение величиной около 1 В. Как добиться большего значения электрического напряжения? Конечно же, последовательным подключением батареек. Другими словами, за счет использования большего количества лимонов! (Или же большего количества стаканов и подставок под яйцо с соком.)

Вам также могут пригодиться небольшие куски проводов, чтобы соединить несколько электродов. Здесь можно немного пролистать книгу вперед и обратиться к главе 2, где я описываю, как нужно снимать изоляцию с проводов. На рис. 1.61 (ЦВ-рис. 1.61) и рис. 1.62 показана схема данного эксперимента.

Рис. 1.61. Батарейка, сделанная из трех лимонов. Не очень огорчайтесь, если светодиод вдруг перестал светиться. Лимоны имеют достаточно высокое электрическое сопротивление, поэтому мы не можем подать достаточно существенный ток, особенно через относительно малую площадь поверхности гвоздя и монетки. Тем не менее батарейка из лимона в состоянии генерировать напряжение, которое вы можете измерить с помощью вашего мультиметра

Рис. 1.62. Лимонный сок из бутылок будет «работать» так же хорошо, как и свежевыжатый. Я отрезал нижние части трех бумажных стаканчиков, вставил в них оцинкованные кронштейны и использовал куски толстого медного многожильного провода для изготовления положительных электродов

Если все элементы схемы вы соберете правильно, и убедитесь, что электроды не касаются друг друга, то вы сможете заставить светиться светодиод с помощью двух или трех «лимонных батареек», соединенных последовательно. (Некоторые типы светодиодов отличаются от большинства, обладая достаточно большой чувствительностью к низким значениям тока. Позднее в этой книге я буду говорить о светодиодах, работающих при очень низких значениях тока. Поэтому, если вы хотите улучшить шансы вашей батарейки зажечь светодиод, то вам нужно поискать и купить парочку именно таких светодиодов.)

Насколько же большой ток может быть создан вашей лимонной батарейкой? Установите на вашем мультиметре режим для измерения тока в миллиамперах и подключите его к гвоздю и монете. Я измерил ток величиной порядка 2 мА. Однако я смог получить ток 10 мА, когда вместо монет использовал толстый медный 10-жильный провод, а вместо кровельного гвоздя — большую оцинкованную пластинку для соединения деревянных элементов каркасного дома, которые были опущены в грейпфрутовый сок (см. рис. 1.62). Таким образом, при увеличении поверхности металлического электрода, лучше контактирующего с электролитом, можно получить соответственно и больший ток.

Каково же внутреннее сопротивление вашего лимона? Извлеките медный и цинковый электроды и вставьте измерительные щупы с никелевым покрытием в сок. При измерении сопротивления я получал результат порядка 30 кОм, когда оба щупа находились в тех же местах в лимоне, что и вынутые электроды.

Если же измерительные щупы были вставлены в другие места (на большее расстояние друг от друга), то сопротивление было 40 кОм или даже больше. Меньше ли будет сопротивление, если вы будете проверять сопротивление жидкости в чашке?

Здесь осталось еще два вопроса, которые вы можете исследовать. Насколько долго ваша лимонная батарейка будет в состоянии генерировать электричество? И как вы думаете, почему покрытые цинком электроды становятся бесцветными после некоторого времени их использования?

Электричество генерируется батареей за счет обмена ионами или свободными электронами между металлами. Если же вы хотите узнать больше об этом, то обратитесь к разд. «Теория — Природа электричества».

Внимание!

При измерении тока никогда не подключайте ваш мультиметр между выводами настоящей батареи. Ток будет настолько большим, что вы в лучшем случае можете сжечь предохранитель мультиметра.

Природа электричества

Чтобы понять природу электричества, вы должны начать с таких основ, как изучение строения атомов. Каждый атом состоит из ядра, в центре которого содержатся протоны, имеющие положительный заряд. Каждое ядро окружено электронами, которые имеют отрицательный заряд.

Деление ядра атома требует использования большого количества энергии, но при этом может высвободиться большое количество энергии — как это случается при атомном взрыве. Но для того, чтобы заставить пару электронов покинуть атом (или присоединиться к другому атому), требуется сравнительно небольшое количество энергии. Например, когда цинк вступает в химическую реакцию с кислотой, он освобождает электроны.

Это то, что случается с цинковым электродом в химической батарейке при выполнении эксперимента 5.

Реакция вскоре останавливается, поскольку электроны накапливаются на цинковом электроде. Они отталкивают друг друга, если им некуда двигаться. Вы можете представить их в виде толпы враждебных друг к другу людей, каждый из которых хочет выкинуть другого и отказывается допустить еще кого-нибудь присоединиться к ним, как это показано на рис. 1.63.

Рис. 1.63. Электроны, расположенные на электроде, плохо относятся друг к другу, что заставляет их отталкивать друг друга

Теперь рассмотрим, что происходит, когда провод соединяет цинковый электрод, на котором находится избыток электронов с другим электродом, изготовленным из другого материала, в котором, наоборот, ощущается недостаток электронов. Электроны могут проходить по проводу очень легко, переходя от одного атома к другому, поэтому они покидают цинковый электрод и перемещаются по проводу, движимые сильнейшим желанием оторваться друг от друга (рис. 1.64). Эта совместная движущая сила и создает то, что называется электрическим током.

Рис. 1.64. Как только мы открываем для переполненного электронами цинкового электрода путь к медному электроду, который содержит «дырки» для электронов, совместное отталкивание электронов заставляет их пытаться отделиться друг от друга и добраться до своего нового «дома» как можно быстрее

Теперь популяция электронов на цинковом электроде уменьшается, но реакция цинка с кислотой может продолжаться, заменяя ушедшие электроны новыми, которые мгновенно начинают повторять поведение своих предшественников, отталкивая друг друга при перемещении по проводу. Процесс продолжается до тех пор, пока реакция цинка с кислотой не прекратится. Обычно это происходит из-за того, что создается слой некоторого соединения, как правило это оксид цинка, который не реагирует с кислотой и предотвращает реакцию с цинком, находящимся внутри электрода (Именно поэтому цинковый электрод при извлечении из кислотного электролита выглядит так, как будто он покрыт сажей.)

Это описание применимо к «первичной батарее», и означает, что она готова к генерированию электрического тока, как только соединение ее выводов дает возможность перемещаться электронам от одного электрода к другому. То количество электричества, которое может генерировать первичная батарея, определяется скоростью, с которой в результате химической реакции освобождаются электроды. Когда металл электродов полностью прореагирует, батарея не может больше продолжать генерировать электричество и выходит из строя. Ее невозможно будет легко перезарядить, поскольку химические реакции не так-то легко заставить идти в обратном направлении, а сами электроды могут покрыться слоем окисла.

В аккумуляторных батареях, которые также известны как батареи с возможностью подзарядки, электроды и электролит подобраны более разумно, что позволяет проводить реакцию в обратном направлении.

Наведение порядка и повторное использование компонентов

Металлические детали, которые вы поместили в лимон или лимонный сок, могут потерять свой цвет, но оставаться пригодными для повторного использования. Захотите ли вы съесть этот лимон после, зависит только от вас.

Положительный и отрицательный

Если электричество это поток электронов, которые имеют отрицательный заряд, то почему люди говорят, что электрический ток течет от положительного вывода батарейки к отрицательному?

Ответ лежит в фундаментальном заблуждении, которое сформировалось в процессе изучения электричества. По различным причинам Бенджамин Франклин пытался понять природу электрического тока, изучая такое явление, как молния во время грозы. Он считал, что наблюдает «поток электрической жидкости», которая течет от положительного полюса к отрицательному.

Франклин предложил эту концепцию в 1747 году.

Фактически Франклин сделал неудачную попытку объяснения, которое оставалось неисправленным до тех пор, пока физик Дж. Дж. Томсон не объявил о своем открытии электрона в 1897 году, т. е. на 150 лет позже. Электрический ток на самом деле течет из области с большим количеством отрицательного заряда в некоторую другую область, которая «менее отрицательна» — что означает, что она «более положительна». Другими словами, электрический ток это поток отрицательно заряженных частиц. В батарее этот поток начинается на отрицательном выводе и течет к положительному.

Вы можете подумать, что когда этот факт был установлен, то все стали опровергать идею Франклина, что поток электрических зарядов течет от положительного вывода к отрицательному. Но когда электрон двигается по проволоке, вы можете продолжать думать, что эквивалентный положительный заряд перемещается в противоположном направлении. Когда же электроны покидают свое «место жительства», они забирают с собой небольшой отрицательный заряд; поэтому оставшееся место становится более положительным. Когда же электрон достигает своего места назначения, его отрицательный заряд делает его несколько менее положительным. Должно случиться что-то очень существенное, чтобы предположение о движении положительных частиц в обратном направлении изменилось.

Более того, все математическое описание поведения электрических зарядов справедливо, если его применять, используя представление о потоке положительных частиц.

Отдавая дань традиции и удобствам, мы все еще оставляем действующей ошибочную концепцию Бена Франклина о потоке положительных частиц к отрицательному полюсу, поскольку на самом деле никакой разницы нет. В графических условных обозначениях, которые используются для обозначения диодов и транзисторов, вы все еще найдете стрелки, которые показывают каким образом эти компоненты должны быть установлены — и все эти стрелки указывают направление от положительного к отрицательному полюсу, даже если это и не соответствует тому, как на самом деле функционируют эти устройства! Бен Франклин возможно был бы удивлен, если бы узнал, что хотя молнии представляют собой потоки отрицательного заряда в облаках, которые разряжаются для нейтрализации на положительном заряде земли, некоторые виды молний на самом деле представляют собой потоки электронов от отрицательно заряженной поверхности земли к положительно заряженным облакам. Это действительно так: и те кого «ударяет молнией» могут пострадать именно от испускания электронов, как это показано на рис. 1.65, а не от их получения.

Рис. 1.65. При некоторых погодных условиях поток электронов во время молнии может пройти с поверхности земли через ваши ноги, верхнюю часть головы и далее в облака. Бенджамин Франклин был бы этому очень удивлен

Основные измерения

Электрический потенциал измеряется за счет сложения зарядов отдельных электронов. Основной единицей измерения заряда является кулон, который равен заряду примерно 6 250 000 000 000 000 000 электронов.

Если вы знаете, как много электронов проходит через кусок провода каждую секунду, то вы можете определить поток электрических зарядов, который выражается в амперах. Фактически один ампер может быть определен, как один кулон в секунду.

Таким образом:

1 ампер = 1 кулон/сек = примерно 6,25 квинтильонов электронов/сек = 6,25 х 1018 электронов/сек.

Не существует такой возможности непосредственно «увидеть» то количество электронов, которое протекает по проводнику (рис. 1.66), но имеются косвенные методы получения этой информации. Например, когда электрон перемещается по проводу, он создает электромагнитное поле вокруг себя. Это поле может быть измерено, и мы можем рассчитать число ампер на основе этого измерения. Счетчик, установленный в вашем доме электросбытовой компанией, может функционировать именно по этому принципу.

Рис. 1.66. Если вы посмотрите внутрь электрического провода с помощью достаточно мощного увеличительного устройства, а по проводу будет протекать поток электронов силой в 1 А в единицу времени, то вы сможете увидеть примерно 6,25 квинтильона электронов, проходящих мимо вас каждую секунду

Если электроны двигаются свободно, то они не совершают работы. Если у вас имеется замкнутая цепь из провода с нулевым сопротивлением, и вы каким-либо образом создадите в нем поток электронов (электрический ток), то он может перемещаться по проводу бесконечно долго. (Это то, что происходит внутри сверхпроводников — картина почти аналогична.)

В обычных условиях провод имеет то или иное значение сопротивления. Сила, которая нужна, чтобы «проталкивать» электроны по проводу, известна как «напряжение», она создает ток, который может выделять тепло, наблюдаемое вами при закорачивании батареи питания. (Если используемый вами провод имеет нулевое сопротивление, то поток электронов, который по нему движется, не будет создавать какую-либо теплоту). Мы можем использовать тепло напрямую, как это делается при эксплуатации электропечи, или же мы можем использовать электрическую энергию другими способами — для запуска двигателя, например. Тем или иным способом мы отбираем энергию электронов для того, чтобы выполнять какую-либо работу.

Один вольт может быть представлен, как единица напряжения, которая нужна для создания тока величиной 1 А, совершающего работу величиной 1 Вт. Как уже было определено ранее:

1 Вт = 1 В х 1 А. Однако эта формула может быть переписана и по-другому:

1 в = 1 вт/1 а.

Эта форма записи более правильная, поскольку «ватт» в принципе может быть определен, как неэлектрическая единица измерения. Только для расширения ваших знаний мы можем вернуться назад к метрической системе единиц:

1 ватт = 1 джоуль/сек.

1 джоуль — это единица работы (энергии), равная работе силы величиной в 1 ньютон при перемещении тела на расстояние в 1 метр в направлении действия силы; 1 ньютон — это сила, которая необходима, чтобы придать телу массой 1 кг скорость 1 м/сек в течение 1 секунды.

На этой основе электрические единицы могут быть связаны с измерениями массы, времени и заряда электронов.

Рассуждая с практической точки зрения

Для практических задач интуитивное понимание того, что такое электричество, может быть более полезным, чем теория.

Лично я предпочитаю аналогии с водой, которые использовались десятилетиями для объяснения электричества. На рис. 1.67 показан высокий наполовину заполненный водой бак, в котором почти у дна сделано отверстие. Представим, что этот бак электрическая батарейка. Высоту воды можно сравнить с напряжением. Объем воды, который проходит через отверстие в секунду, можно сравнить с силой тока в амперах. Малая величина отверстия сравнима с большим сопротивлением.

Рис. 1.67. Если вы хотите получить больше работы от системы …

А где же прячется мощность на этой картинке? Предположим, что рядом с баком расположено небольшое водяное колесо, которое будет крутиться потоком воды из отверстия. Мы можем подключить какой-либо механизм к этому водяному колесу. Теперь поток будет совершать некоторую работу. Имейте в виду, что мощность это мера работы, иначе говоря, мощность равна отношению работы к промежутку времени, в течение которого она совершается.

Может быть, это выглядит, как будто мы получаем что-то даром, извлекая работу из водяного колеса, не возвращая какую-либо энергию обратно в систему. Но помните, уровень воды в баке падает. Но как только я добавлю несколько помощников, которые будут перетаскивать воду обратно в сосуд (рис. 1.68), вы сможете увидеть, что мы обязательно должны совершить работу, чтобы получить ее обратно.

Рис. 1.68. …тем или иным способом, вы должны вернуть «работу» (энергию) обратно в бак

Аналогичным образом батарея отдает энергию не получая ничего, лишь только химические реакции внутри батареи будут преобразовывать чистые металлы в металлические соединения, а мощность, которую мы извлекаем из батарейки, не дает возможности изменить это состояние. Если же это аккумуляторная батарея (аккумулятор), то мы можем «помещать» энергию обратно в нее, направляя химическую реакцию в обратном направлении.

Возвращаясь обратно к сосуду с водой, предположим, что мы не можем извлечь достаточно мощности из него, чтобы крутить колесо. Одним способом решения проблемы будет добавление воды. Больший уровень воды приведет к более высокому давлению и соответственно большему напору воды (рис. 1.69). Это будет то же самое, что и удвоение напряжения при последовательном соединении двух батареек, когда отрицательный вывод одной батарейки подключается к положительному выводу другой (рис. 1.70). В течение всего времени пока сопротивление в цепи будет оставаться неизменным, увеличение напряжения будет приводить к соответствующему увеличению тока, поскольку ток равен напряжению, деленному на сопротивление.

Рис. 1.69. Больший уровень воды создает более мощный поток, пока сопротивление ему остается таким же

Рис. 1.70. Когда вы подключаете две одинаковых батарейки последовательно, то вы тем самым увеличиваете их общее напряжение

А что если нам надо крутить два колеса вместо одного? Мы можем пробить второе отверстие в баке, и давление при этом будет одинаковым для каждого из отверстий. Однако уровень воды в сосуде будет понижаться в два раза быстрее. На самом деле нам лучше бы взять точно такой же второй сосуд. По аналогии с батарейками, если вы соедините две одинаковые батарейки параллельно, то в результате получите точно такое же общее напряжение, но которое будет поддерживаться в два раза более продолжительного времени (рис. 1.71). Кроме того, две такие батарейки будут в состоянии выдавать соответственно больший ток, чем в том случае, когда вы используете только одну батарейку.

Рис. 1.71. Две одинаковые батарейки, соединенные параллельно, будут выдавать одно и то же напряжение в два раза дольше, чем одна

Итак, подведем итоги.

• Две одинаковые батарейки, соединенные последовательно, увеличивают общее напряжение в два раза.

• Две одинаковые батарейки, соединенные параллельно, при одном и том же значении напряжения могут в два раза увеличить ток.

Отлично, теперь в нашем распоряжении теоретических сведений более чем достаточно. В следующей главе мы продолжим выполнять некоторые эксперименты, которые будут и далее закладывать фундаментальные представления об электричестве, постепенно продвигая нас к пониманию внутренней конструкции различных электронных устройств, которые могут быть нам интересными и полезными.