4.4.5. Направления повышения защищенности стегосистем от статистических атак

We use cookies. Read the Privacy and Cookie Policy

4.4.5. Направления повышения защищенности стегосистем от статистических атак

Таким образом, различные стегосистемы, использующие принцип замены младших битов элементов контейнеров на биты встраиваемого сообщения, оказались нестойкими против статистических атак. Повысить их стойкость можно различными способами, например, переходом к операциям встраивания вида взвешенное сложения элементов контейнера с элементами встраиваемого сообщения. Подобные операции не сохраняют баланс вероятностей появления соответствующих элементов контейнера и стего и поэтому обладают более высокой устойчивостью к анализу их статистик.

Очевидным способом является уменьшение степени заполнения контейнера битами скрываемого сообщения, то есть уменьшение пропускной способности стегоканала в обмен на повышение его защищенности. Предложенные в работе [14] статистические атаки на основе критерия Хи-квадрат в большинстве случаев не способны обнаружить стегоканал при заполнении контейнера на 50 % и менее, особенно если внедренное сообщение рассредоточено по контейнеру. Эти атаки всегда стартуют от начала исследуемой последовательности и используют равномерно увеличивающееся окно анализа. Они обнаруживают существование стегоканала, если статистические характеристики искажается непрерывно от начала контейнера. Промежуточные области в контейнере, которые не имеют искажения, могут вызывать неправильный результат теста. Поэтому в работе [15] предложена усовершенствованная статистическая атака, названная автором расширенный тест Хи-квадрат. Тест использует фиксированный размер окна анализа, перемещаемого вдоль исследуемой последовательности. Такая атака осуществляет локальный поиск и позволяет указать на место вложения скрываемого сообщения. В этой же работе предлагается способ повышения защищенности от статистических атак стегосистем с вложением скрываемого сообщения в НЗБ контейнера. Процесс встраивания скрытой информации в контейнер разделен на 3 этапа:

1) определение избыточных бит, которые можно изменять без ущерба для контейнера;

2) выбор НЗБ, в которые будет встраиваться скрываемая информация;

3) коррекция статистических изменений в сформированном стего.

На первом этапе оценивается количество НЗБ контейнера, которые можно заменить на биты скрываемого сообщения без потери качества контейнера типа изображение. Реально для встраивания можно использовать не более половины выявленных битов. Если найденных избыточных битов не достаточно, надо поменять контейнер. Затем по секретному ключу определяются равновероятно распределенные в пределах контейнера НЗБ, заменяемые на биты скрываемой информации. Затем сформированное стего оценивается статистическими тестами и при выявлении отклонений от статистических характеристик естественных контейнеров оставшиеся избыточные биты используются для исправления этих отклонений. Простым методом коррекции является сохранение взаимной корреляции и величины энтропии, вычисляемой по тесту Маурера. Действительно, если некоторый младший бит при встраивании изменяется от 0 к 1, то целесообразно изменить соседний НЗБ от 1 к 0 и т. п. Хотя этот метод позволяет сохранить величину энтропии и коэффициент корреляции при вложении в контейнер скрываемого сообщения, он имеет статистические слабости макроскопического характера. Это выражается в искажении гистограммы коэффициентов ДКП, аналогично тому, как это показано на рис. 4.5. Если левый коэффициент изменился, то чтобы гистограмма стего не отличалась от гистограммы исходного контейнера, необходимо изменить правый коэффициент на ту же величину.

Корректирующие преобразования должны удовлетворять требованиям:

1) для любого фрагмента изображения распределение коэффициентов ДКП стего должно быть аналогично их распределению в пустом контейнере;

2) число исправлений, необходимых для коррекции статистических характеристик, должно быть малым.

В работе [15] приведены результаты исследования алгоритма коррекции при встраивании сообщения в контейнерные изображения размером 640?480 пикселов. Среднее число коэффициентов ДКП, которые можно использовать для встраивания, равно 46000 и изменялось от 30000 до 97000. До встраивания вероятность совпадения соседних избыточных битов равна 63,8 % со средним квадратическим отклонением ± 3,4 % по множеству изображений. Длина сжатого скрываемого сообщения равна 14700 битов. Корректирующие преобразования привели к 2967 ± 434 дополнительным изменениям в избыточных битах. Это составило приблизительно 20 % от размера скрываемого сообщения. Среднее число искажений, которые не удалось скорректировать, составило 186…400.

В таблице 4.1 показаны результаты статистических тестов для исследуемого алгоритма. Видно, что в стего без коррекции заметно уменьшился коэффициент корреляции между избыточными битами и увеличилась их энтропия. Коррекция позволяет сделать встраивание скрываемых сообщений статистически необнаруживаемым.

Таблица 4.1

Исследуемая последовательность Коэффициент корреляции Универсальный тест Маурера Исходный контейнер 63,77 % ±,37 % 6,704 ± 0,253 Стего без коррекции 59,10 % ± 3,19 % 6,976 ± 0,168 Стего с коррекцией 62,91 % ± 3,36 % 6,775 ± 0,231

Таким образом, если применить корректирующие преобразования к стего, то использованные методы статистического стегоанализа не способны выявить факт существования стегоканала. Однако справедливости ради необходимо отметить, что могут быть построены другие статистические атаки, для нейтрализации которых потребуется дополнительно использовать избыточные биты, что еще более уменьшит скорость передачи скрываемой информации.

Совершенствование стегосистем в общем случае может быть описано некоторым итеративным процессом. Стегосистемы разрабатываются и предлагаются авторами к использованию. Они исследуются известными методами стегоанализа, при необходимости для них разрабатываются новые методы анализа, и так до тех пор, пока не удается их взломать. Затем с учетом выявленных слабостей затем принципы построения стегосистем совершенствуются, но одновременно развиваются и стегоатаки. Этот процесс итеративно продолжается, пока не удается доказать, что при текущем уровне развития стегоанализа данная стегосистема является практически стойкой. Такой процесс сложился для анализа и синтеза криптосистем, и очевидно, что он справедлив и для стегосистем. Однако надо учитывать, во-первых, что по сравнению с криптосистемами в стегосистемах есть дополнительный параметр — контейнер, а во-вторых, практическая стойкость стегосистем может иметь значительно большее число толкований.

Данный текст является ознакомительным фрагментом.