7. ТЕЛЕВИДЕНИЕ
7. ТЕЛЕВИДЕНИЕ
Здесь речь пойдет о волшебном зеркальце, и волшебном барабане, диске с дырками, стеклянных трубках с магнитными полями и «космически» быстрыми частицами, об умножении этих частиц, о телебашнях, антеннах и частотной модуляции, о цветоразностных сигналах и цветоделелительных масках, светящихся кристаллах и разноцветных сигналах, а также о многом-многом другом, что встречается в телевидении.
Как передать изображение?
Вообще-то, нет ничего проще — сходите в фотоателье, сфотографируйтесь и передайте свою фотокарточку кому хотите! Объект вашей благосклонности далеко? Пошлите по почте. Может случиться так, что не пройдет и года, как ваше фото окажется в нужных руках. Но только не подумайте, что я иронизирую над работой нашей почты. Ничего подобного! Просто есть места, куда пароходы ходят два-три летних месяца, самолеты летают месяца три-четыре в год, а все остальное время, когда океан покрыт льдом или штормит, а аэродром заметен снегом, связь осуществляется только по радио. Как же передать фото? Но зачем говорить об окраинах страны — вам надо передать, и очень срочно, чертежи на завод в соседнем городе. Как быть?
Изобретения появляются, как правило, тогда, когда в объекте изобретения возникает насущная необходимость. И фототелеграф был изобретен. Это еще не телевидение: по фототелеграфу передают только неподвижные изображения, например изображение газетных полос. Зато жители Камчатки читают центральные газеты одновременно с москвичами. Так как же все-таки передают изображение?
Любое изображение можно представить совокупностью точек элементов изображения. Всмотритесь повнимательнее в любую газетную фотографию, видите, что она состоит из мелких точек?
Вооружитесь лупой, и вы увидите точки совершенно отчетливо. Но что значит увидите? Анатомы давно установили, что глаз человека содержит оптическую систему: собирающую линзу-хрусталик и светочувствительную оболочку — сетчатку. На нее проецируется изображение предмета (заметим, что «вверх ногами», но это неважно — мозг воспринимает такое изображение ничуть не хуже). Сетчатка состоит из множества светочувствительных элементов — рецепторов, палочек и колбочек, названных так по их внешнему виду, наблюдаемому под микроскопом. Светочувствительность палочек очень велика: они дают возможность видеть в сумерках. Чувствительность колбочек ниже, но зато они позволяют различать цвета и обеспечивают большую четкость изображения. «Сигналы» рецепторов предварительно обрабатываются нервными клетками сетчатки и передаются «многоканальным» зрительным нервом в головной мозг, где и происходит окончательная «обработка» изображения — формирование образов, коррекция, узнавание и т. д.
Глаз представляет собой на удивление совершенный прибор. Помимо таких достоинств, как автоматическая наводка на резкость, автоматическая регулировка светочувствительности, он обладает отличной разрешающей способностью: около одной угловой минуты в центре поля зрения. Для получения столь высокого разрешения число колбочек в середине сетчатки достигает 180000 на квадратный миллиметр! Итак, в глазу отдельные элементы изображения возбуждают различные рецепторы и сведения об освещенности рецепторов передаются по параллельным каналам в мозг.
Устройство глаза.
Точно так же и в технике передачи изображений необходимо освещенность каждого элемента преобразовать в электрический сигнал, усилить и передать по линии связи, а затем снова преобразовать в свет. Именно так и действовала первая телевизионная система, которую изобрел Дж. Керри в 1875 году. Изображение проецировалось на мозаику селеновых фотоэлементов, каждый из которых соединялся проводником с лампой на приемном экране. Сопротивление селена уменьшается при освещении, и соответствующая лампа загорается ярче. В результате на приемном экране появляется мозаичное изображение передаваемого объекта. В системе Керри для достижения четкости современного телевидения требуется около полумиллиона проводов или каналов связи.
Техника пока не может пойти на такие затраты. Поэтому во всех последующих системах передачи изображения использована идея развертки. Фототелеграф передает информацию о каждом элементе изображения последовательно. С этой целью исходное изображение накладывают на барабан, вращающийся с определенной скоростью. Фотоэлемент, снимающий информацию о «степени черноты» элемента, медленно перемещается параллельно оси барабана. «Поле зрения» фотоэлемента очень мало: оно сфокусировано линзой по размеров элемента изображения и описывает на поверхности барабана винтовую линию, последовательно «осматривая» все элементы изображения. Сигнал фотоэлемента усиливается и передается к корреспонденту по проводам или по радио. У корреспондента имеется точно такой же барабан, на котором перо оставляет черный след. Приемный барабан вращается строго синхронно с передающим, а перо, так же как и фотоэлемент, медленно перемещается вдоль оси барабана.
Если в поле зрения фотоэлемента входит черный элемент изображения, перо оставляет след, если белый — перо отводится от приемного барабана, и бумага, закрепленная на его поверхности, остается белой. Так можно передавать чертежи и графики. Но как передавать полутона? Тем более что газеты печатают с клише, которые полутонов не терпят: либо клише оставит след типографской краски, либо — нет. Поступают просто: в зависимости от «черноты» элемента изображения изменяют продолжительность касания пера к бумаге.
Из рисунка видно, как выглядит почти черный тон изображения, переданного но фототелеграфу. Сигнал поступает с небольшими перерывами, и перо чертит почти сплошной след. При передаче серого тона длина штрихов сравнима с длиной пробелов. При передаче светлого тона сигнал поступает в виде коротких импульса и перо оставляет короткие штрихи. Рядом показаны соответствующие телеграфные сигналы.
Система с параллельной передачей элементов изображения.
Фототелеграф.
Не будем далее останавливаться на технике фототелеграфа, отметим главное: чтобы передать изображение, надо его «развернуть», «разложить» на элементы. Чем мельче элементы, тем четче воспроизводится изображение. Давайте снимем с фототелеграфной аппарата лист с изображением и положим его на стол, на плоскость.
Это переданный «кадр». На нем видны «строки» — следы поля зрения фотоэлемента в передатчике и пера в приемнике. Штриховыми линиями показан «обратный ход». В фототелеграфном аппарате его нет, поскольку изображение свернуто в цилиндр. А если мы xoтим передавать плоское изображение, обратный ход обязательно будет. Итак, первый принцип, лежащий в основе телевидения, — принцип развертки — нам ясен. Обратимся теперь ко второму принципу и назовем его условно «принципом кино».
Фототелеграфные сигналы.
Развертка плоского изображения.
А как передать движущееся изображение?
Братья Люмьер, изобретатели кинематографа, вряд ли могли представить себе бурное развитие своего детища в нашем веке. И тем более трудно было представить, что у кино появится очень сильный конкурент — телевидение.
Принцип кино состоит в частой смене изображений. Экран в кинотеатре вспыхивает 48 раз в секунду благодаря обтюратору (затвору), открывающему световой поток, и столько же раз гаснет. Во время каждых двух вспышек с кинопленки проецируется один кадр изображения. Человеческий глаз не способен заметить эти мелькания — время его реакции на свет составляет около 0,1 с, поэтому максимальная частота мерцаний, еще замечаемых глазом, не превосходит 10…12 Гц. Каждый последующий кадр воспроизводит ту же сцену, но движущиеся предметы на нем уже слегка переместились. Эти небольшие перемещения при быстрой смене кадров и воспринимаются как непрерывное движение. Теперь становится ясно, как можно передать на расстояние движущееся изображение.
Надо передавать не менее 10…12 кадров в секунду (принцип кино). Но каждый кадр надо еще преобразовать в последовательность сигналов, соответствующих элементам изображения (принцип развертки).
Именно таким путем и шли первые изобретатели телевидения, и принципы, заложенные ими, сохранились до настоящего времени. Изменилась только техника передачи и приема движущихся изображений. В первых опытах использовали механическую развертку изображения. Вот, например, диск П. Нипкова — немецкого инженера, получившего в 1884 году в Германии патент на «оптико-механическое устройство». В диске по спирали Архимеда просверлен ряд отверстии. Диаметр отверстий соответствует размеру элемента изображения. А само изображение сцены проецируется объективом на верхнюю часть диска с ограничительной рамкой. Ширина кадра соответствует расстоянию между соседними отверстиями, а высота — шагу спирали. Кадр, ограниченный рамкой, изображен в верхней части диска. Строки в этом кадре горизонтальны, как и в современном телевидении, но применялись системы и с вертикальными строками. Рамка в этом случае располагалась на боковой стороне диска, как показано на рисунке штриховыми линиями. Если диск быстро вращать, то первое отверстие прочерчивает первую строку, и, когда оно выходит за кадр, второе отверстие развертывает другую строку, и так далее, пока не будет развернут весь кадр.
Диск Нипкова.
Теперь посмотрим, как устроена система механического телевидения 30-х годов. Объектив проецирует изображение сцены на рамку и вращающийся позади нее диск, а за диском установлен фотоэлемент. Ток фотоэлемента пропорционален освещенности данного элемента изображения, и на выходе фотоэлемента при развертке появляется так называемый видеосигнал, напряжение которого пропорционально освещенности.
Развертка изображения осуществлялась всего на 30 строк. Столько же отверстий было и в диске Нипкова. Строка содержала 40 элементов. Следовательно, изображение кадра разбивалось всего на 1200 элементов. Видеосигнал модулировал несущую телевизионной станции по амплитуде и излучался в эфир. В приемнике, выполненном так же, как и радиовещательный, сигнал усиливался и детектировался. Продетектированный видеосигнал (он точно такой же, как и после фотоэлемента в передатчике) поступал на неоновую лампу с плоским катодом, освещавшую экран, за которым вращался точно такой же диск Нипкова. Вращение дисков на радиостанции и в приемнике строго синхронизировалось. С этой целью в паузах между кадрами передавались синхронизирующие импульсы, управляющие вращением мотора в приемнике.
Впечатление от первых телевизионных опытов было огромным. Представьте себе большой корпус (ящик, как тогда говорили) с экранчиком величиной со спичечную коробку. Включили. Взревел мотор, набирая обороты, гудение стало выше тоном, и вот уже, набрав номинальные обороты, высоко запел мотор и зашелестел быстро вращающийся диск. Вы с волнением прильнули глазом к оранжевому окошечку — экрану. Сначала вы ничего не различаете, кроме мелькающих полос: это мотор еще не вошел в синхронизм — в ряде приемников синхронизма добивались вручную, нажимая пальцем на вращающийся диск сквозь специальное окошко в корпусе.
Затем движение полос замедляется, останавливается и вы различаете какую-то смутную тень — человека! Он шагнул, поднял руку. Вы все видите. Это ли не чудо?! Вероятно, так и воспринимались первые телевизионные передачи из Москвы в конце 30-х годов. Вы удивитесь, вероятно, если узнаете, что велись они на длинных волнах и принимать телепередачи можно было за многие сотни, а то и тысячи километров. «Но как же это возможно?» — спросите вы. Чтобы ответить на вопрос, почему возможно длинноволновое телевидение и почему его теперь нет, давайте немного посчитаем. Ничего, кроме знания арифметики и тех начал теории информации, о которых вы уже читали в этой книге, нам не потребуется.
Немного арифметики
Итак, мы передаем 30 строк изображения в одном кадре и по 40 элементов изображения в каждой строке. Всего в кадре 1200 элементов. Чтобы картинка не мелькала, будем передавать, как это делалось в малострочной электромеханической системе телевидения, 12,5 кадров в секунду. Итого получается 1200·12,5 = 15000 элементов изображения в секунду. Какова же при этом частота видеосигнала? Она максимальна при передаче изображения, состоящего из 20 черных и 20 белых вертикальных полос, чередующихся между собой.
При развертке такого изображения получается видеосигнал в виде меандра (прямоугольных колебаний) с частотой 7500 Гц. Воспроизводить крутые фронты такого сигнала нет необходимости: все равно круглое отверстие диска Нипкова, пробегая мимо полосы изображения, смажет края. Значит, достаточно передать только основную частоту такого видеосигнала 7,5 кГц. Такая же высокая частота видеосигнала получается и при передаче изображения «шахматной» доски, содержащей 600 белых и столько же черных квадратов. Все другие изображения дадут видеосигнал, изменяющийся медленнее, а следовательно, и содержащий меньшие частоты.
Итак, надо передать спектр видеосигнала шириной 7,5 кГц. Но это же звуковой спектр! И любая радиовещательная станция пригодна для передачи телевизионных изображений. Другое дело, что четкость этих изображений никакой критики не выдерживает, даже диктора узнать нельзя! Чтобы повысить четкость, надо перейти к электронному телевидению. По современному отечественному стандарту кадр развертывается 625 строками по 820 элементов в строке (ширина кадра составляет четыре третьих его высоты). За одну секунду передается 25 кадров. Видеосигнал займет спектр шириной почти 6,5 МГц. Для его передачи не хватило бы ДВ, СВ и половины КВ диапазона, вместе взятых. Поэтому современные телецентры ведут передачи только на УКВ, где еще есть запас по частоте.
Осваивается диапазон дециметровых волн (ДМВ), а в недалеком будущем ожидается переход и на сантиметровые волны, но последнее уже связано с непосредственным телевизионным вещанием со спутников Земли.
Сцены, дающие максимальную частоту видеосигнала.
Электронно-лучевая трубка
С удовольствием просматривая мультфильм «Ну, погоди!», вы вряд ли задумывались о том, как устроен телевизор, а тем более передающий телецентр.
Рождение электронного телевидения началось с изобретения электронно-лучевой трубки (ЭЛТ). Она и явилась тем «волшебным зеркальцем», которое, как в сказке, показывает нам весь мир. Основные идеи, заложенные в конструкции ЭЛТ, сформулировал еще в 1907 году профессор Петербургского университета Б. Л. Розинг. Однако лишь в 30-х годах появились приемные трубки — кинескопы — с магнитной фокусировкой луча, дававшие удовлетворительную четкость изображения. Первые передачи электронного телевидения начались в нашей стране с октября 1938 года. Изображение развертывалось на 243 строки при 25 кадрах в секунду, что давало намного более четкое изображение по сравнению с электромеханической системой, которая, кстати, еще функционировала.
Передачи велись на УКВ по одной программе. Прерванные войной передачи возобновились в 1946 году в Москве и Ленинграде. Был принят новый, современный телевизионный стандарт с разложением изображения на 625 строк.
Так что же представляет собой ЭЛТ? Стеклянная колба, из которой откачали воздух. В горловине — катод, выполненный в виде металлического цилиндра с вмонтированной внутри нитью накала. По ней пропускают электрический ток, нагревая катод до оранжевого свечения. Происходит термоэлектронная эмиссия: так же как и в радиолампе, катод испускает электроны. Около катода, как и в радиолампе, расположена управляющая сетка. Подавая на нее отрицательный относительно катода потенциал, можно регулировать количество электронов, пролетающих сквозь нее к экрану. В результате, забегая вперед, скажем, что от этого зависит яркость свечения экрана. Далее расположена довольно сложная конфигурация металлических цилиндров — ускоряющий и фокусирующий электроды. Их часто называют первым и вторым анодами. Эти электроды разгоняют электроны по направлению к экрану и «сжимают» электронный поток в узкий луч таким образом, чтобы на поверхности экрана диаметр луча был минимален. Обычно он составляет доли миллиметра. Естественно, что для ускорения электронов первый и второй аноды должны иметь положительный потенциал относительно катода. Ну а чтобы электроны не оседали на них, электроды выполнены в виде цилиндров, по оси которых и проходит луч.
Теперь посмотрим на ЭЛТ с другой стороны, а именно с той, с которой на нее обычно смотрят, т. е. со стороны экрана. Экран изнутри покрыт белым составом — люминофором. Он обладает способностью светиться при ударе в него электронов. Почему он светится? Быстро движущийся электрон несет некоторую кинетическую энергию. Попав в вещество, он отдаст ее первому попавшемуся на пути атому. Атом переходит в возбужденное состояние, но долго оставаться в нем не может, ибо все в природе стремится к равновесию, т. е. к состоянию с минимальной энергией. Возвращаясь в равновесное состояние, атом отдает избыток энергии в виде кванта света.
Явление люминесценции распространено в природе. Может быть, темной ночью в лесу вы видели, как светятся гнилушки. Их свет даже чем-то напоминает свечение экрана ЭЛТ. Атомы соединений фосфора, образующегося при гниении дерева, возбуждаются в результате химических реакций (так называемая хемилюминесценция), а отдают энергию с квантами света. Чтобы экран ЭЛТ светился ярче, электроны нужно разогнать до большой скорости. Этому служит третий (и последний) анод ЭЛТ, образованный графитовым покрытием на стенках колбы вокруг экрана. Да и сам экран приобретает потенциал третьего анода.
Ускоряющее напряжение небольших трубок обычно бывает около нескольких киловольт, а для больших цветных телевизионных трубок достигает 25 кВ. Знающие физику могут самостоятельно оценить, какую скорость приобретают электроны под воздействием ускоряющей разности потенциалов 25 кВ. Ответ удивит вас: скорость электронов окажется около 100000 км/с, т. е. около трети скорости света!
Вот какие огромные скорости существуют за обычным телевизионным экраном!
Но зажечь на экране одну светящуюся точку мало, надо еще и передвигать луч по экрану. Это делает отклоняющая система, надетая на горловину трубки. Есть трубки с электростатическим отклонением луча. В них помещены две пары пластин, расположенных в двух взаимно перпендикулярных плоскостях. Одна пара пластин отклоняет луч по горизонтали, другая — по вертикали. Чем большая разность потенциалов подана на отклоняющие пластины, тем сильнее отклоняется луч, разумеется, в сторону положительно заряженной пластины — ведь электроны несут отрицательный заряд.
Трубки с электростатическим отклонением луча широко применяются в осциллографах — приборах, предназначенных для наблюдения формы электрических колебаний. Поскольку ни одна сколько-нибудь серьезная работа в области радиоэлектроники сегодня немыслима без осциллографа, кратко остановимся на его устройстве.
Электронный осциллограф.
Исследуемый сигнал через усилитель подастся на пластины, отклоняющие луч по вертикали (пластины Y). На пластины горизонтального отклонения (пластины X) от специального генератора подастся напряжение развертки — напряжение, изменяющееся по пилообразному закону. По мере нарастания пилообразного напряжения луч на экране трубки перемещается слева направо, прочерчивая горизонтальную ось — ось времени. Но если в то же самое время на пластины действует исследуемый сигнал, то траектория луча будет в точности соответствовать этому сигналу. Осциллограф пригоден только для наблюдения периодических сигналов, причем генератор развертки синхронизируют исследуемым сигналом, чтобы каждый цикл развертки воспроизводил одну и ту же часть периода или несколько периодов сигнала. Человеческому зрению смена циклов развертки незаметна, и он видит неподвижную фигуру, соответствующую форме сигнала. Нелишне заметить, что осциллограф — это глаза инженера. Осциллограф позволяет оценить искажения сигнала, измерить его амплитуду, длительность, установить наличие или отсутствие — одним словом, провести почти полную диагностику исследуемого аппарата или системы.
В телевидении изображение на экране ЭЛТ создается совсем по-другому. Оно не рисуется лучом, а появляется как определенный набор светлых и темных участков кадра. Следовательно, луч ЭЛТ при развертке должен обежать всю поверхность и нужны два генератора развертки — по строкам и кадрам. Генератор строчной развертки заставляет отклоняться луч по оси X, причем с довольно большой частотой (15625 Гц в отечественных телевизорах). Генератор кадровой развертки имеет значительно меньшую частоту (50 Гц). При совместном действии обоих генераторов луч перемещается по экрану слева направо и, прочерчивая первую строку, быстро возвращается обратно, в начало второй строки, и т. д. Когда прочерчена последняя строка, напряжение генератора кадровой развертки скачком изменяется и луч возвращается к началу — в верхний левый угол экрана. То, что он нарисовал на экране, называют растром. Включите телевизор без антенны или на том канале, где нет телепередач, и вы увидите чистый белый растр. Чтобы растр превратился в изображение, луч надо модулировать в процессе развертки по яркости, делая его интенсивнее в светлых местах изображения и ослабляя — в темных.
Внимательный читатель мог усмотреть одну неточность в предыдущем абзаце: раньше я говорил, что телевизионная передача ведется с разверткой 25 кадров в секунду, а частоту генератора кадровой развертки назвал 50 Гц. Противоречия здесь нет. Чтобы экран меньше мерцал, используют чересстрочную развертку. При этом луч сначала прочерчивает все нечетные строки, а затем, между ними, — четные. Принципиально от этого ничего не меняется, только частота кадровой развертки повышается вдвое и смотреть на такой экран менее утомительно.
Телевизионный растр с чересстрочной разверткой.
Но не думайте, что просмотр телевизионных передач (как и кино) — это отдых. Ваш зрительный нерв напряженно работает, заполняя пробелы между кадрами (которых вы поэтому и не замечаете), мелькания сильно раздражают его. Не рекомендуют сразу после просмотра телепередачи или кинофильма садиться за руль автомобиля, поскольку ваша зрительная реакция понижена. Надо выждать полчаса-час.
В телевизионных приемных ЭЛТ отклоняющих пластин нет. Дело в том, что трубки с электростатическим отклонением не могут обеспечить отклонение луча на большой угол. В результате длина трубки получается гораздо больше диаметра экрана. В осциллографах с этим мирятся, а вот телевизор стремятся сделать пошире и потоньше. Разработаны трубки с углом отклонения луча 70 и даже 110°. Это совсем короткие и широкие трубки с большим прямоугольным экраном. Луч в них отклоняется магнитным полем. Ведь электронный луч представляет собой направленное движение зарядов, т. е. электрический ток. На ток в магнитном поле действует сила, пропорциональная индукции поля и току. X. Лоренц давным-давно установил формулу для силы, действующей на заряженную частицу, летящую в магнитном поле:
F = eVB,
где е — заряд частицы; V — ее скорость; В — индукция поля. Сила перпендикулярна направлению полета частицы (электрона) и перпендикулярна направлению поля.
Если у вас есть постоянный магнит, проведите любопытный опыт. Поднесите магнит к экрану работающего телевизора и посмотрите, как исказится изображение! Это магнитное поле искривило траекторию полета электронов. Только не надо делать этот опыт с цветным телевизором: детали трубки могут намагнититься и нарушится сведение цветов. А с черно-белым телевизором опыт вполне безопасен.
Отклонение заряженной частицы магнитным полем.
Итак, для отклонения луча по строке магнитное поле надо направить сверху вниз. Оно создастся парой катушек сверху и снизу горловины трубки — строчными отклоняющими катушками. Аналогично, только по бокам горловины трубки, расположены кадровые отклоняющие катушки. Ток пилообразной формы в отклоняющих катушках изменяется по линейному закону с частотой строк и кадров, а растр образуется точно так же, как было описано выше. Телевизионные приемные трубки с магнитным отклонением называют кинескопами.
Кинескоп:
1 — экран; 2 — люминофор; 3 — анод; 4 — управляющий и фокусирующий электроды; 5 — катод; 6 — цоколь; 7 — отклоняющие катушки на горловине кинескопа
Современное электронное телевидение
Чтобы посмотреть телепередачу, одного кинескопа мало, нужны еще телевизор — устройство достаточно сложное и телецентр, из которого ведутся передачи. Вы, разумеется, видели, что операторы в студии пользуются телекамерами — устройствами для преобразования изображения в видеосигнал. Основу телекамеры составляет передающая телевизионная трубка. Исторически первыми были иконоскопы. Термины «кинескоп» и «иконоскоп» предложил В. Зворыкин один из первых изобретателей электронного телевидения. Они образованы от греческих слов «движение», «изображение» и «смотрю». Преобразователем изображения в электрический сигнал в иконоскопе служит мозаика фоточувствительных глобул серебра, нанесенных на слюдяную пластинку и изолированных друг от друга. Обратная сторона пластины металлизирована. На мозаику с помощью объектива фокусируется изображение. Там, где освещенность велика, кванты света выбивают из атомов серебра электроны (происходит фотоэлектрический эффект), и это место мозаики приобретает положительный заряд. Там же, где освещенность мала фотоэффект слаб и заряд тоже невелик. За время передачи кадра заряд накапливается в элементарных конденсаторах, одна обкладка которых образована глобулой серебра, а другая, общая, — металлизированной подложкой слюдяной пластины. Таким образом, распределение заряда на поверхности мозаичной пластины в точности соответствует оптическому изображению. Теперь заряд надо «считать».
Устройство иконоскопа.
Делает это электронный луч. Электронная пушка, содержащая катод, ускоряющий и фокусирующий электроды, формирует электронный луч, а отклоняющие катушки развертывают его по строкам и кадрам. Пробегая по мозаике, электронный луч замыкает цепь «мозаика — вход видеоусилителя», и заряд элементарного конденсатора стекает через высокое (несколько мегаом) сопротивление нагрузки, создавая на нем напряжение видеосигнала.
Электронный луч в данном случае подобен коммутатору, условно показанному на рисунке в виде переключателя. Таким способом с мозаики иконоскопа и считывается видеосигнал.
Принцип действия иконоскопа.
Иконоскопы уступили позиции более чувствительным и совершенным передающим телевизионным трубкам. К ним относятся суперортиконы, видиконы и некоторые другие. Но прежде чем рассказывать об их устройстве, следует сказать несколько слов о принципе фотоумножения, который в них часто используется. Обычный фотоэлемент под воздействием энергии света генерирует фотоэлектрический ток. При попадании квантов света атомы фотокатода испускают электроны. Но один электрон на квант света — это очень мало, и тогда специалисты говорят, что у фотоэлемента мал квантовый выход. А что если фотоэлектроны ускорить электрическим полем и заставить ударяться о металлическую пластину — динод? Электрон выбьет из нее несколько новых электронов. Их также можно ускорить и направить к следующему диноду. В современном фотоумножителе может быть десяток динодов, а коэффициент умножения электронов достигает миллиона! В настоящее время фотоумножитель является самым чувствительным и эффективным приемником света.
Фотоэлектронный умножитель.
Посмотрите на упрощенный эскиз конструкции суперортикона. Изображение проецируется объективом на фотокатод, нанесенный изнутри на торцевую поверхность стеклянной трубки, откачанной до глубокого вакуума. Веществом фотокатода обычно служат соединения цезия, легко испускающие электроны под действием света. За фотокатодом расположены ускоряющий электрод и мишень с размещенной перед ней мелкой металлической сеткой. Фотоэлектроны ускоряются электрическим полем в сторону мишени, ударяются о нее и выбивают по нескольку вторичных электронов, которые тут же собираются сеткой. Чем ярче освещенность, тем больше фотоэлектронов бомбардирует мишень, тем больше она отдает вторичных электронов и тем больший положительный заряд получает. Так электронное изображение переносится с фотокатода на мишень.
Чтобы оно не потеряло четкость в этой секции суперортикона, называемой секцией переноса, используется магнитное поле длинной фокусирующей катушки, надетой на трубку. Фокусируя электронный поток, оно заставляет фотоэлектроны, вылетевшие из какого-то места фотокатода, попадать на мишень в точке, лежащей точно напротив этого места.
Устройство суперортикона:
1 — объектив; 2 — фотокатод; 3 — ускоряющий электрод; 4 — сетка; 5 — мишень; 6 — тормозящий электрод; 7 — отклоняющие катушки; 8 — фокусирующая катушка; 9 — фокусирующий электрод; 10 — анод; 11 — корректирующие катушки; 12 — электронная пушка; 13 — катод; 14 — секция умножителя
Итак, на мишени сформировалось распределение заряда, соответствующее исходному изображению. Мишень изготовлена из слабо проводящего электрический ток стекла, поэтому сформированный заряд передается и на противоположную сторону мишени. По ней движется (сканирует) электронный луч, считывая изображение.
Для фокусировки и отклонения электронного луча служат уже упомянутая фокусирующая и отклоняющие катушки, расположенные снаружи трубки. Поле фокусирующей катушки направлено по оси трубки. Оно не изменяет осевой составляющей скорости электрона. Но если у электрона «появится желание» полететь вбок, т. е. возникнет радиальная составляющая скорости, то сила Лоренца заставит его двигаться по спирали, возвращаясь к оси трубки.
Дополнительная фокусировка осуществляется электрическим полем специального электрода. Поле отклоняющих катушек направлено перпендикулярно оси трубки. Оно отклоняет электронный луч по строкам и кадрам в соответствии с током пилообразной формы, подаваемым в катушки от генераторов разверток.
Перед мишенью установлен тормозящий электрод, создающий электрическое поле, уменьшающее скорость электронов в луче почти до нулевой. Такой «медленный» пучок электронов не вызывает вторичной эмиссии с мишени. Отраженный от мишени электронный луч возвращается в область «электронной пушки», вокруг которой расположены секции электронного умножителя. Здесь количество электронов увеличивается примерно в 1000 раз, и повышается чувствительность суперортикона к слабым сигналам. В результате чувствительность получается такой, что можно вести внестудийные передачи без дополнительного освещения. Наряду со множеством достоинств суперортикон имеет и существенный недостаток: уж очень он сложен по конструкции. Значительно проще устроен видикон.
В видиконе применена мишень из вещества, не испускающего фотоэлектроны, а изменяющего свою проводимость под действием света. К таким веществам относятся аморфный селен, сурьма, соединения свинца и кадмия. Как вы, вероятно, помните, селен использовался и в первой телевизионной системе Дж. Керри, но там не было коммутации элементов изображения развертки. В видиконе изображение развертывается электронным лучом. Посмотрим устройство трубки. На внутреннюю торцевую ее поверхность нанесена полупрозрачная проводящая металлическая подложка, а поверх нее — слой вещества, образующего мишень. Перед мишенью расположена сетка, соединенная со вторым анодом и служащая для выравнивания поля в области мишени. С другой стороны трубки расположены «электронная пушка» (электронный прожектор) и анод, собирающий электроны, отраженные от мишени. Для фокусировки и отклонения луча на трубку надеты фокусирующая и отклоняющие катушки.
Устройство видикона.
Работает видикон так. Сканирующий электронный луч, попадая на элементарные конденсаторы мишени (смотри эквивалентную схему), доводит потенциал правой обкладки до потенциала катода. Конденсаторы при этом заряжаются напряжением 4-20 В, приложенным к полупрозрачной проводящей подложке мишени. Пока луч прочерчивает все строки кадра, каждая элементарная емкость разряжается через фотосопротивление.
Если данный участок мишени освещен, то его сопротивление мало и конденсатор разряжается быстро. Когда электронный луч попадет на этот конденсатор, он создаст большой ток зарядки. Если же освещенность мала, конденсатор почти не разряжается, и от луча почти не требуется тока для его зарядки. Ток заряда элементарных конденсаторов, протекая через нагрузочный резистор, создает на нем видеосигнал.
Принцип видикона.
Нам осталось выяснить, что же находится внутри передающей телевизионной камеры. Разумеется, оптическая система — объектив, а также передающая трубка с фокусирующей и отклоняющей системами, генераторы разверток. Кроме того, имеется предварительный видеоусилитель, повышающий уровень видеосигнала с 10…20 мВ, развиваемых передающей трубкой, до 0,1…0,3 В. Есть еще электронный видоискатель, попросту говоря, встроенный телевизор, показывающий оператору то, что попадает в кадр.
От телекамеры видеосигнал поступает в камерный канал, где содержатся усилители и корректоры телевизионного сигнала. На выходе каждого камерного канала имеются видеоконтрольные устройства, позволяющие режиссеру передачи «выбирать» нужную телекамеру. Далее к сигналу подмешиваются строчные и кадровые синхронизирующие импульсы, импульсы гашения луча во время обратного хода, образующие так называемую синхросмесь. Они создаются специальным синхрогенератором. Роль синхронизации в телевидении очень важна, ведь благодаря ей электронные лучи в передающей и во многих миллионах приемных трубок движутся строго одинаково. Если синхронизация нарушается, луч в приемной трубке — кинескопе — движется не так, как в передающей, и картинка искажается до неузнаваемости. Поэтому синхроимпульсы передаются в начале каждой строки и в начале каждого кадра. Они-то и запускают одновременно генераторы разверток и в передающей камере, и во множестве телевизоров, принимающих данную программу. После введения синхросмеси на выходе линейного усилителя формируется полный телевизионный сигнал, готовый для передачи в эфир. Он передается на телецентр, где модулирует радиопередатчик. Посмотрим, что происходит в телевизионном приемнике.
Принятый из эфира сигнал попадает в телевизионный приемник, усиливается, детектируется и выделяется в том виде, как он изображен на рисунке. Теперь он еще раз усиливается до амплитуды в несколько десятков вольт видеоусилителем и подается на управляющий электрод кинескопа, изменяя яркость свечения экрана. Одновременно из видеосигнала выделяются синхроимпульсы. Кадровый синхроимпульс имеет большую длительность, и по этому признаку его можно отделить от строчных. Синхроимпульсы управляют работой двух генераторов разверток: строчной и кадровой, формирующих растр. Вот, собственно, и все. Лучи в передающей и приемной трубках движутся по растру одинаково, и перед телезрителем появляется точно такое же изображение, как и перед телевизионной камерой на студии.
Как все? «А звук?» — спросит недоумевающий читатель. Звук передается по совершенно отдельному каналу с помощью частотной модуляции. Если любой радиовещательный частотно-модулированный (ЧМ) приемник перестроить на частоты телевизионных каналов, можно слушать звуковое сопровождение телепередач. Правда, это не очень интересно, ведь, как справедливо уже было замечено, лучше один раз увидеть, чем сто раз услышать.
Полезный видеосигнал.
Несколько слов о видеозаписи
Согласитесь, что очень удобно носить с собой в сумке с ремнем через плечо не кинокамеру, а легкую портативную телевизионную камеру, соединенную с легким портативным видеомагнитофоном, лежащим в той же сумке. Вы снимаете, точнее, записываете на магнитную ленту понравившийся сюжет, а затем дома, сидя в кресле, просматриваете запись на экране цветного телевизора. Не понравилась запись — можно стереть и записать что-нибудь другое.
Такие портативные телекамеры уже созданы, но у нас пока еще они не получили широкого распространения. Стационарные видеомагнитофоны сейчас имеются в продаже, хотя цены на них пока еще очень высоки. Да это и понятно: видеомагнитофон — достаточно сложный аппарат с трудоемкой в изготовлении прецизионной механической частью. Ведь полоса частот видеосигнала достигает 6 МГц, а при воспроизведении надо очень точно соблюсти временные соотношения в сигнале, чтобы не возникли геометрические искажения изображения.
Непосредственно записывать на ленту широкополосный сигнал трудно, так как пришлось бы вводить слишком сильную коррекцию АЧХ усилителей записи и воспроизведения. Кроме того, нестабильность прилегания ленты к головке привела бы к амплитудной модуляции сигнала — мерцанию яркости изображения. Поэтому в видеомагнитофонах используют частотную модуляцию и записывают на ленту ЧМ колебания, модулированные видеосигналом. Это снимает проблемы, связанные с паразитной АМ, поскольку воспроизводимый ЧМ сигнал перед демодуляцией ограничивается по уровню. В отечественной системе видеозаписи минимальному уровню видеосигнала (уровню белого) соответствует мгновенная частота ЧМ сигнала 4,4 МГц, а максимальному (уровню синхроимпульсов) 3 МГц.
Таким образом, девиация ЧМ сигнала составляет всего + 0,7 МГц. Тем не менее ширина спектра ЧМ сигнала получается гораздо больше из-за широкого спектра модулирующих видеочастот и достигает 6…8 МГц. Сигналы цветности при цветной видеозаписи записываются отдельно от сигнала яркости с использованием поднесущих частот 0,594 МГц (красная строка) и 0,75 МГц (синяя строка).
Для записи столь широкополосных сигналов относительная скорость движения головки и ленты должна быть очень высокой. При непосредственной записи на ленту шириной 6,25 мм (ленту выбирают максимально высокого качества) скорость ее устанавливают 1,5…3 м/с. Это почти в 50 раз выше скорости ленты в звукозаписывающих магнитофонах. Запись ведется на трех дорожках, отведенных для яркостного и двух цветоразностных сигналов.
При установке катушки с пленкой «другой стороной» три новые дорожки записываются на ленте в промежутках между тремя уже записанными. Ширина каждой из дорожек едва достигает 1 мм (при обычной стереозаписи звука на ширине ленты укладывается четыре звуковые дорожки). При прямой продольной видеозаписи полоса частот видеосигнала неизбежно сужается и качество изображения также несколько ухудшается.
Лучшие результаты дают видео магнитофоны с блоком вращающихся головок. В них пленка шириной 12,7 или даже 25,4 мм, протягивается относительно медленно около цилиндрического блока с закрепленными на нем несколькими головками. Блок быстро вращается, причем ось вращения наклонена относительно пленки. В результате рабочие зазоры головок «прочерчивают» на поверхности ленты наклонные строки. При скорости вращения блока с двумя головками 1500 об./мин или 25 об./с на одной строке умещается как раз один кадр телевизионного изображения. Это позволяет осуществить при воспроизведении интересный трюк, так называемый стоп-кадр. Если протяжку ленты выключить, то магнитная головка на вращающемся блоке будет прочерчивать все время одну и ту же строку. Изображение на телевизионном экране как бы замрет и будет оставаться неподвижным, пока снова не включат протяжку ленты.
Расположение дорожек на магнитной видеоленте.
Мы не будем подробно рассматривать конструкцию видеомагнитофона — она достаточно сложна. На входе устройства записи в нем имеются блоки разделения цветного телевизионного сигнала на яркостную и цветоразностные компоненты, которые затем модулируют по частоте вспомогательные генераторы. Сформированный ЧМ сигнал поступает на магнитную головку. При воспроизведении все эти операции выполняются в обратном порядке. Кроме того, в видеомагнитофоне имеется масса вспомогательных устройств, предназначенных для синхронизации, коррекции начала строки развертки, регулирования скорости протяжки ленты и вращения блока головок, и т. п. Много усилий предпринимается конструкторами и для максимального упрощения управления видеомагнитофоном. Не редкость уже сенсорные переключатели режима работы, электронные дисплеи, показывающие уровень записи и воспроизведения, количество израсходованной ленты, и многое другое. По общей сложности видеомагнитофон приближается к небольшой ЭВМ, и уже поговаривают о микропроцессорном управлении режимами его работы.
Телевизионные передатчики
Когда передающая телевизионная студия сформирует полный телевизионный сигнал, его можно будет передать в эфир. Первые передачи электронного телевидения с высокой четкостью (625 строк разложения изображения) велись на метровых волнах УКВ диапазона. Выделенные каналы сохранились до настоящего времени. Это каналы I–V на частотах 48,5…100 МГц (6,2…3 м).
По мере строительства телецентров во всех крупных городах этих каналов оказалось недостаточно, ведь расположенные рядом телецентры должны работать на разных каналах, иначе на границе областей обслуживания возможны сильные взаимные помехи. Например, если Москва ведет телевизионное вещание в канале I, то ни в Калинине, ни в Рязани, ни в любых других окрестных городах этот канал использовать нельзя, иначе слабый сигнал, приходящий из Москвы, будет создавать помеху. С высокой Останкинской башни телевизионный сигнал может распространятся при благоприятных условиях на расстояние до 300 км.
Выделили еще семь каналов в диапазоне частот 174…230 МГц (1,7… 1,3 м). К настоящему времени и этого оказалось недостаточно, и к 12 каналам на метровых волнах добавили еще два десятка каналов на ДМВ в диапазоне 470…630 МГц (64…47 см). Чем выше частота канала, тем легче передать телевизионный сигнал с широкой полосой. Выше мы определили, что для передачи изображения, содержащего 625 строк и полмиллиона элементов изображения в кадре, нужен спектр частот шириной 6,5 МГц. Но при амплитудной модуляции несущей образуются две боковые полосы и ширина излучаемого спектра может достигнуть 13 МГц. Это слишком много, и специалисты сразу применили очень прогрессивный способ модуляции с подавлением одной боковой полосы. Правда, несущая не подавляется, а для детектирования в приемнике служит не синхронный, а самый обычный диодный детектор, как его часто называют, детектор огибающей. Более того, для уменьшения искажений при детектировании нижняя боковая полоса частот подавляется не полностью, а оставляется ее часть шириной 1,25 МГц, непосредственно примыкающая к несущей.
Посмотрите на изображение спектра излучаемого телевизионного сигнала — там все это показано. На 6,5 МГц выше несущей сигнала изображения расположена несущая звукового передатчика. Звуковое сопровождение передается с частотной модуляцией при девиации ± 50 кГц. Полная ширина радиочастотного спектра телевизионного сигнала получается около 8 МГц.
При передаче столь широкого спектра на метровых волнах мы получаем относительную ширину спектра около 10 %, а на частотах первых телевизионных каналов — даже больше. Это создает определенные трудности в проектировании и передатчиков, и антенн, и приемников: все эти устройства должны быть широкополосными.
Спектр видеосигнала.
Любая неравномерность в передаче телевизионного спектра приводит к ухудшению качества и четкости изображения. На ДМВ относительная ширина полосы частот намного уже и пропустить ее без ослаблений легче. Поэтому и качество телевизионного вещания на ДМВ обычно выше.
Структурная схема телевизионного передатчика несложна. Несущая генерируется высокостабильным задающим генератором. В модуляторе амплитуда несущей изменяется в такт с видеосигналом, поступающим от телекамеры. Ну а перед антенной установлен усилитель мощности, увеличивающий мощность телевизионного сигнала до нескольких десятков, а иногда и сотен киловатт. Впрочем, ввиду ограниченного радиуса действия УКВ передатчиков особенно большие мощности не нужны. Канал звукового сопровождения представляет собой отдельный передатчик меньшей мощности. Лишь в некоторых случаях используют общий усилитель мощности звукового и видеосигналов, который в этом случае должен иметь особенно высокую линейность. Линейность усилителя — это прямо пропорциональная зависимость между амплитудами входного и выходного сигналов. Любая нелинейность приводит к тому, что в спектре выходного сигнала появляются побочные продукты сигналы с частотами, которых во входном спектре не было. Так, например, если во входном спектре присутствовали две частоты — f1 и f2, то в выходном спектре появятся еще и частоты 2f1 — f2 и 2f2 — f1. Это расширит спектр излучения, создаст помехи и ухудшит качество сигнала.
Передатчик изображения.
Еще несколько слов о передатчике звукового сопровождения. Частота его задающего генератора слегка изменяется под действием звукового сигнала. На структурной схеме нарисованы несколько умножителей частоты. Зачем они? Вот зачем. Гораздо удобнее выполнить задающий генератор на сравнительно низкую частоту — в несколько раз ниже излучаемой. Генератор будет работать стабильнее, и не будут влиять наводки мощного сигнала со стороны выходного каскада. Более того, при умножении частоты возрастает и девиация частоты, вызываемая звуковым модулирующим сигналом.
Поясним сказанное примером. Звуковое сопровождение первого телевизионного канала передастся на частоте 56,25 МГц. Сконструируем задающий генератор на частоту 6,25 МГц и промодулируем его звуковым сигналом с девиацией всего ± 5,55 кГц. Затем включим последовательно два утроителя частоты, чтобы получить общий коэффициент умножения в девять раз. В результате на выходной каскад поступит ЧМ сигнал с требуемыми центральной частотой 56,25 МГц и девиацией ± 50 кГц.
Передатчик звука.