7.1.1. РЕЗИСТИВНЫЙ НАГРЕВ
7.1.1. РЕЗИСТИВНЫЙ НАГРЕВ
Начальный период. Первые эксперименты по нагреву проводников электрическим током относятся к XVIII в. В 1749 г. Б. Франклин (США) при исследовании разряда лейденской банки обнаружил нагрев и расплавление металлических проволочек, а позднее по его указанию Дж. Пристли (1766 г.), почетный член Петербургской академии наук, изучал нагрев различных металлов и отметил различия в их проводимости.
Нагрев проводников исследовали Л. Тенар (Франция, 1801 г.), В. В. Петров (1802 г.) и X. Дэви (Англия, 1807 г.). Используя вольтов столб, Дж.Г. Чилдрен (Англия, 1815 г.) осуществил нагрев и расплавление различных металлов. Несколько ранее Пепи (Англия) поставил эксперименты по нагреву алмазной пыли в разрезе железной проволоки, которая раскалялась при протекании электрического тока докрасна. Через некоторое время алмазная пыль исчезала, а железо превращалось в сталь. Это устройство можно считать первой электропечью сопротивления косвенного действия. Р. Хар (Англия, 1839 г.) предложил вакуумную печь сопротивления с использованием воздушного насоса. Важный для расчета установок резистивного нагрева закон выделения энергии в проводнике при протекании тока открыли Дж.П. Джоуль (1841 г.) и Э.Х. Ленц (1844 г.).
В 1849 г. М. Депре изготовил лабораторную печь с угольным нагревателем в виде трубки длиной 23 мм. Г.Б. Симпсон получил американский патент (1859 г.) на нагревательное устройство с нагревателем в виде спирали, расположенным в углублениях изолирующей подложки.
Первые применения резистивного нагрева в медицине:
Штейнхель и Хейдер (Австрия, 1845 г.) использовали электрический нагрев для умерщвления зубного нерва;
Миддельдорпф (Германия, 1854 г.) применил электронагрев в хирургии.
Увеличение производства электроэнергии в конце XIX в. позволило создавать крупные электропечи сопротивления.
В 1886–1888 гг. братья Коулесс создали печь прямого нагрева для получения алюминия из глинозема (одновременно с расплавлением шел электролиз). Ток проходил между электродами через слой шихты (мощность 300 кВт, напряжение 60 В, ток до 6000 А). В те же годы П.Л.Т. Эру изготовил печь для получения алюминиевой бронзы с проводящим тиглем и электродом сверху. Сначала расплавлялась медь, затем загружался глинозем, и шел электролиз. Ток протекал от электрода к корпусу (угольная футеровка) через шихту. Одновременно Ч.М. Холл создал подобную печь. Эти печи существенно снизили стоимость получения алюминия.
В. Борхерс (Германия, 1891 г.) создал опытную печь для восстановления оксидов с угольным нагревателем.
Е.А. Ачесон (США, 1892 г.) получил патент на печь для нагрева смеси песка, кокса и других материалов. При нагреве эта смесь превращается в огнеупор — карборунд (карбид кремния). При мощности печи 746 кВт за 36 ч получено 3150 кг карборунда. Такая же конструкция печи использована этим же ученым для получения графита из угля.
B. Нернст (Германия, 1901 г.) разработал лабораторную печь в виде алундовой трубы с намотанным на нее проволочным нагревателем из иридиевой платины мощностью 2,5 кВт с температурой 1450 °С. Эта печь была изготовлена фирмой «Хереус» (Германия), которая затем стала выпускать широкую номенклатуру подобных печей с муфелем и нагревателями из платиновой фольги.
В 1904 г. Эгли (Германия) изобрел простой способ получения изделий любой формы из силита (карбида кремния) — материала для нагревателей.
B.C. Арсем (США, 1906 г.) создал вакуумную плавильную печь с температурой 2000 °С с графитовым нагревателем. Фирма «Дженерал электрик» стала изготавливать с 1912 г. такие печи мощностью 15–60 кВт.
C. Аббот (США, 1921 г.) получил патент на конструкцию и технологию производства теплоэлектронагревателей (ТЭНов) (фирма «Дженерал электрик», начало работ 1913 г.)
Простота и большое число возможных конструктивных вариантов реализации резистивного нагрева содействовали широкому применению резистивных установок.
Промышленные печи сопротивления. В 1901 г. В.П. Ижевский изготовил первую в мире плавильную электропечь сопротивления (рис. 7.1). В качестве нагревателя использована разогретая магнезитовая или динасовая футеровка. В конструкции применены технически интересные решения (стальной кожух в виде барабана, установленный на катках, вращение печи, подвод тока через коллектор), которые позднее использовались при создании печей. Опытная печь была установлена в Киевском политехническом институте, а промышленная печь емкостью 100 кг для плавки цветных металлов была пущена на заводе в г. Екатеринославе.
Рис. 7.1. Трехфазная вращающаяся печь сопротивления В.П. Ижевского для плавки цветных металлов
До 1917 г. в России был создан целый ряд печей резистивного нагрева:
электрическая соляная ванна для закалки инструмента (Стабинский, 1907 г.);
корытообразная печь прямого нагрева для выплавки металлов из руд (А. Н. Лодыгин, 1908 г.);
крупная печь сопротивления для нагрева стальных снарядов перед закалкой (Королев, 1913–1914 гг.);
печи сопротивления с угольными стержневыми нагревателями для плавки стали (С.С. Штейнберг и А. Ф. Грамолин, 1915 г.). Эти печи (рис. 7.2) делались емкостью 100–1000 кг и успешно работали в годы первой мировой войны на ряде уральских заводов.
В США промышленные печи сопротивления были созданы фирмой «Дженерал электрик» в 1917 г. В этих печах были применены нихромовые нагреватели. Уже к 1920 г. на автозаводах США применялись печи сопротивления различных конструкций: камерные, шахтные, с выдвижным подом, колпаковые, карусельные, конвейерные и др. При этом использовались наработки, сделанные при создании пламенных печей.
Рис. 7.2. Печь С.С. Штейнберга и А.Ф. Грамолина с угольными нагревателями для плавки стали
Развитие установок резистивного нагрева в Европе отстало от развития аналогичных установок в США на несколько лет. Например, в Германии в 1924 г. эксплуатировались лишь несколько печей для нагрева металлов. Однако к 1932 г. там работали уже несколько сотен печей для термообработки металлов.
В СССР производство электропечей сопротивления (ЭПС) было налажено в 1928–1930 гг. на заводе «Электрик» в Ленинграде (до этого печи закупались за границей). В 1931 г. там серийно выпускались камерные печи с нихромовыми нагревателями.
Московский электрозавод в 1933 г. изготовил плавильную ЭПС для алюминиевых сплавов. С 1934 г. печи сопротивления стали производиться на заводе «Меткой», позднее переименованном в Московский завод электротермического оборудования (МосЗЭТО). Завод «Электрик» освоил выпуск толкательных печей (1935г.), а завод «Уралэлектромашина» — ЭПС шахтные и с шагающим подом для термообработки тонких труб из спецсплавов (1937 г.). С 1950 г. МосЗЭТО серийно стал выпускать конвейерные печи.
Значительный вклад в разработку и внедрение ЭПС внесло ОКБ «Электропечь», позднее преобразованное во ВНИИ электротермического оборудования (ВНИИЭТО), директором которого стал А.П. Альтгаузен:
40–50-е годы — созданы вакуумные ЭПС для термообработки реакционно-активных металлов и сплавов с температурой 900–1200 °С;
1953 г. — на Первом государственном подшипниковом заводе (ГПЗ-1) в Москве введен в эксплуатацию автоматический цех АЦ-1 с ЭПС по производству подшипников;
1963 г. — на ГПЗ-1 введен цех АЦ-2, а через 2 года АЦ-3 с линиями ЭПС различных типов (конвейерных, роликовых и с пульсирующим подом);
50–60-е годы — созданы высоковакуумные печи с нагревателями из вольфрама, молибдена и тантала с температурой до 2500 °С;
1966–1968 гг. — осуществлены пуск рольганговой печи сопротивления длиной 100 м для отжига труб в г. Северске, ввод в эксплуатацию печи в г. Лыткарино Московской области для ситаллизации и отжига астродиска диаметром 6 м (использован в крупнейшем телескопе) и пуск печи для вакуумной (светлой) закалки;
1970 г. — пуск толкательного агрегата для газовой цементации в г. Заволжье;
1978 г. — пуск первой печи для вакуумной закалки наГПЗ-1.
Значительный вклад в разработку методов расчета электрических печей сопротивления в 50-х годах внесли А.Д. Свенчанский и другие сотрудники кафедры электротермических установок Московского энергетического института (МЭИ).
К концу 80-х годов электрические печи сопротивления как по численности, так и по суммарной мощности занимают первое место среди электротермических установок различных видов.
В нашей стране, например, выпускалось электропечей сопротивления только периодического действия более 100 типоразмеров и модификаций с единичными мощностями от десятков до сотен киловатт. В эксплуатации находились десятки тысяч таких печей суммарной мощностью несколько миллионов киловатт.
Основными направлениями развития ЭПС явились разработки печей с контролируемой атмосферой, вакуумных и прецизионных, а также систем микропроцессорного управления для них. В этой области в 80-х годах большую работу проводил ВНИИЭТО, которым с 1972 по 1987 г. руководил А.С. Бородачев.
Установки прямого нагрева {электроконтактные). В 1930 г. в СССР В.Н. Гевелинг предложил метод электроконтактной роликовой закалки, которая некоторое время даже конкурировала с индукционной поверхностной закалкой.
В 40–50-е годы широкое применение получил электроконтактный нагрев заготовок под ковку в кузнечном цехе на Горьковском автозаводе (Е.И. Натанзон, Г.М. Тельнов). Использовались установки различных типов, например установка К-13 для нагрева стальных заготовок диаметром 20–45 мм установленной мощностью 200 кВ?А, производительностью 160–180 заготовок в час, с удельным расходом электроэнергии 325–350 кВт?ч/т.
В конце 80-х годов подобные установки довольно широко использовались на машиностроительных заводах для нагрева под пластическую деформацию (раскатка концов труб, нагрев заклепок и др.)
Бытовые устройства резистивного нагрева. В 1881 г. на Международной электротехнической выставке в Париже были представлены бытовые электронагревательные приборы: камин и утюг. В конце прошлого века были сделаны изобретения системы электрообогрева помещений (О. Розе, Англия, 1882 г.), погружаемого водонагревателя — кипятильника (Юллиг, Германия, 1883 г.), электрозажигалки для сигар (Т. Эдисон, 1883 г.), а также плитки, чайника, самовара и т. д.
Во ВНИИЭТО в начале 70-х годов были созданы образцы различных бытовых электронагревательных приборов: электроконвекторы, водонагреватели, кофеварки, утюги и т. п. Началось проектирование специальных заводов и цехов по их производству, но до их реализации дело не дошло.
Инфракрасный нагрев. В 1903 г. был получен патент Германии на применение инфракрасного нагрева (Шраммбергер). В 1934 г. X. Жорже (Франция) создал электропечь с графитовыми нагревателями для инфракрасного нагрева кварцевого стекла и плавки металлов. Широкое применение получил инфракрасный нагрев для сушки лакокрасочных покрытий автомобилей на заводах Форда (США, 1932 г.). Инфракрасные излучатели (темные и светлые) применяют также для различных технологических процессов, например, для сушки.
Интересную установку с использованием светлых излучателей для термообработки сварных швов трубопроводов на электростанциях в 80-х годах создал и с успехом применяет ЦНИИ технологии машиностроения (ЦНИИТмаш).
Электродные водонагреватели. Первый водогрейный котел на напряжение 6 кВ был изготовлен в 1907 г.
В 60-е годы во ВНИИЭТО была разработана серия электродных котлов для сельского хозяйства мощностью 25–400 кВт с диапазоном регулирования мощности 10–100%.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
7.1.2. ЭЛЕКТРОДУГОВОЙ НАГРЕВ
7.1.2. ЭЛЕКТРОДУГОВОЙ НАГРЕВ Начальный период. В 1878–1880 гг. В. Сименс (Англия) выполнил ряд работ, которые легли в основу создания дуговых печей прямого и косвенного нагрева, в том числе однофазной дуговой печи емкостью 10 кг. Им было предложено использовать магнитное поле для
7.1.3. ИНДУКЦИОННЫЙ НАГРЕВ
7.1.3. ИНДУКЦИОННЫЙ НАГРЕВ Начальный период. Индукционный нагрев проводников основан на физическом явлении электромагнитной индукции, открытом М. Фарадеем в 1831 г. Теорию индукционного нагрева начали разрабатывать О. Хэвисайд (Англия, 1884 г.), С. Ферранти, С. Томпсон, Ивинг. Их
7.7.5. ПЛАЗМЕННЫЙ НАГРЕВ
7.7.5. ПЛАЗМЕННЫЙ НАГРЕВ Начальный период. Начало работ по плазменному нагреву относится к 20-м годам XX в. Сам термин «плазма» ввел И. Ленгмюр (США), а понятие «квазинейтральная» — В. Шоттки (Германия). В 1922 г. X. Гердиен и А. Лотц (Германия) провели опыты с плазмой, полученной при
7.1.6. ЭЛЕКТРОННО-ЛУЧЕВОЙ НАГРЕВ
7.1.6. ЭЛЕКТРОННО-ЛУЧЕВОЙ НАГРЕВ Начальный период. Техника электронно-лучевого нагрева (плавка и рафинирование металлов, размерная обработка, сварка, термообработка, нанесение покрытий испарением, декоративная обработка поверхности) создана на основе достижений физики,
7.1.7. ЛАЗЕРНЫЙ НАГРЕВ
7.1.7. ЛАЗЕРНЫЙ НАГРЕВ Начальный период. Лазер (сокращение английского Light Amplification by Stimulated Emission of Radiation) создан во второй половине XX в. и нашел определенное применение в электротехнологии.Идею процесса вынужденного излучения высказал еще А. Эйнштейн в 1916 г. В 40-х годах В.А.