14. Методы определения движения жидкости
14. Методы определения движения жидкости
Гидростатика изучает жидкость в ее равновесном состоянии.
Кинематика жидкости изучает жидкость в движении, не рассматривая сил, порождавших или сопровождавших это движение.
Гидродинамика также изучает движение жидкости, но в зависимости от воздействия приложенных к жидкости сил.
В кинематике используется сплошная модель жидкости: некоторый ее континуум. Согласно гипотезе сплошности, рассматриваемый континуум – это жидкая частица, в которой беспрерывно движется огромное количество молекул; в ней нет ни разрывов, ни пустот.
Если в предыдущих вопросах, изучая гидростатику, за модель для изучения жидкости в равновесии взяли сплошную среду, то здесь на примере той же модели будут изучать жидкость в движении, изучая движение ее частиц.
Для описания движения частицы, а через нее и жидкости, существуют два способа.
1. Метод Лагранжа. Этот метод не используется при описании волновых функций. Суть метода в следующем: требуется описать движение каждой частицы.
Начальному моменту времени t0 соответствуют начальные координаты x0, y0, z0.
Однако к моменту t они уже другие. Как видно, речь идет о движении каждой частицы. Это движение можно считать определенным, если возможно указать для каждой частицы координаты x, y, z в произвольной момент времени t как непрерывные функции от x0, y0, z0.
x = x(x0, y0, z0, t)
y =y (x0, y0, z0, t)
z = z(x0, y0, z0, t) (1)
Переменные x0, y0, z0, t, называют переменными Лагранжа.
2. Метод определения движения частиц по Эйлеру. Движение жидкости в этом случае происходит в некоторой неподвижной области потока жидкости, в котором находятся частицы. В частицах произвольно выбираются точки. Момент времени t как параметр является заданным в каждом времени рассматриваемой области, которая имеет координаты x, y, z.
Рассматриваемая область, как уже известно, находится в пределах потока и неподвижна. Скорость частицы жидкости u в этой области в каждый момент времени t называется мгновенной местной скоростью.
Полем скорости называется совокупность всех мгновенных скоростей. Изменение этого поля описывается следующей системой:
ux = ux(x,y,z,t)
uy = uy(x,y,z,t)
uz = uz(x,y,z,t)
Переменные в (2) x, y, z, t называют переменными Эйлера.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Административный регламент Министерства внутренних дел Российской Федерации исполнения государственной функции по контролю и надзору за соблюдением участниками дорожного движения требований в области обеспечения безопасности дорожного движения
Административный регламент Министерства внутренних дел Российской Федерации исполнения государственной функции по контролю и надзору за соблюдением участниками дорожного движения требований в области обеспечения безопасности дорожного движения Приложение к
21. Разновидность движения
21. Разновидность движения В зависимости от характера изменения поля скоростей различают следующие виды установившегося движения:1) равномерное, когда основные характеристики потока – форма и площадь живого сечения, средняя скорость потока, в том числе по длине,
22. Дифференциальные уравнения движения невязкой жидкости
22. Дифференциальные уравнения движения невязкой жидкости Уравнение Эйлера служит одним из фундаментальных в гидравлике, наряду с уравнением Бернулли и некоторыми другими.Изучение гидравлики как таковой практически начинается с уравнения Эйлера, которое служит
24. Форма Громеки уравнения движения невязкой жидкости
24. Форма Громеки уравнения движения невязкой жидкости Уравнения Громеки – попросту другая, несколько преобразованная форма записи уравнения Эйлера.Например, для координаты x Чтобы его преобразовать, используют уравнения компонентов угловой скорости для вихревого
31. Уравнения движения вязкой жидкости
31. Уравнения движения вязкой жидкости Для получения уравнения движения вязкой жидкости рассмотрим такой же объем жидкости dV = dxdydz, который принадлежит вязкой жидкости (рис. 1).Грани этого объема обозначим как 1, 2, 3, 4, 5, 6. Рис. 1. Силы, действующие на элементарный объем
33. Уравнение Бернулли для движения вязкой жидкости
33. Уравнение Бернулли для движения вязкой жидкости Элементарная струйка при установившемся движении вязкой жидкостиУравнение для этого случая имеет вид (приводим его без вывода, поскольку его вывод сопряжен с применением некоторых операций, приведение которых
35. Уравнение Бернулли для неустановившегося движения вязкой жидкости
35. Уравнение Бернулли для неустановившегося движения вязкой жидкости Для того, чтобы получить уравнение Бернулли, придется определить его для элементарной струйки при неустановившемся движении вязкой жидкости, а затем распространять его на весь потокПрежде всего,
36. Ламинарный и турбулентный режимы движения жидкости. Число Рейнольдса
36. Ламинарный и турбулентный режимы движения жидкости. Число Рейнольдса Как нетрудно было убедиться в вышеприведенном опыте, если фиксировать две скорости в прямом и обратном переходах движения в режимы ламинарное ? турбулентное, то?1 ? ?2где ?1 – скорость, при которой
19. Методы определения и учета погрешностей
19. Методы определения и учета погрешностей Методы определения и учета погрешностей измерений используются для того, чтобы:1) на основании результатов измерений получить настоящее (действительное) значение измеряемой величины;2) определить точность полученных
11. Методы определения показателей качества
11. Методы определения показателей качества Показателями качества продукции являются числовые характеристики одного или многих свойств продукции, определяющих ее качество, и взятые в установленных условиях ее изготовления и эксплуатации.Выделяют следующие показатели
19. Методы определения и учета погрешностей
19. Методы определения и учета погрешностей Методы определения и учета погрешностей измерений используются для того, чтобы:1) на основании результатов измерений получить настоящее (действительное) значение измеряемой величины;2) определить точность полученных
44. Методы определения показателей качества
44. Методы определения показателей качества Показателями качества продукции являются числовые характеристики одного или многих свойств продукции, определяющих ее качество, и взятые в установленных условиях ее изготовления и эксплуатации.Критерием разделения методов
19. Методы определения первичныхошибок
19. Методы определения первичныхошибок Первичной ошибкой является неточность геометрической формы рабочих поверхностей узлов (звеньев). Подобными ошибками могут считаться отклонения разного рода: геометрические параметры, связанные с формой и поверхностью узлов, а
16. Методы определения электрических свойств
16. Методы определения электрических свойств Металлы с высокой электропроводностью (медь, алюминий) используются в электромашиностроении, для устройства линий электропередачи, а сплавы с высоким электросопротивлением – для ламп накаливания электронагревательных
18. Дилатометрия. Магнитные свойства металлов и сплавов. Методы определения
18. Дилатометрия. Магнитные свойства металлов и сплавов. Методы определения Дилатометрия – раздел физики; основная задача: изучение влияния внешних условий (температуры, давления, электрического, магнитного полей, ионизирующих излучений) на размеры тел. Главный предмет
49. Химический состав, методы получения порошков, свойства и методы их контроля
49. Химический состав, методы получения порошков, свойства и методы их контроля Порошковые материалы – материалы, получаемые в результате прессования металлических порошков в изделия необходимой формы и размеров и последующего спекания сформованных изделий в вакууме
Бабаев М А
Просмотр ограничен
Смотрите доступные для ознакомления главы 👉