53. Дифференциальные уравнения неустановившегося движения
53. Дифференциальные уравнения неустановившегося движения
Для того, чтобы составить уравнение любого вида движения, нужно проецировать все действующие силы на систему и приравнивать их сумму к нулю. Так и поступим.
Пусть имеем напорный трубопровод круглого сечения, в котором есть неустановившееся движение жидкости.
Ось потока совпадает с осью l. Если выделить на этой оси элемент dl, то, согласно вышеуказанному правилу, можно составить уравнение движения
В приведенном уравнении проекции четырех сил, действующих на поток, точнее, на ?l, равны нулю:
1) ?M – силы инерции, действующие на элемент dl;
2) ?p – силы гидродинамического давления;
3) ?T – касательные силы;
4) ?G – силы тяжести: здесь мы, говоря о силах, имели в виду проекции сил, действующих на элемент ?l.
Перейдем к формуле (1), непосредственно к проекциям действующих сил на элемент ?t, на ось движения.
1. Проекции поверхностных сил:
1) для гидродинамических сил ?p проекцией будет
2) для касательных сил ?T
Проекция касательных сил имеет вид:
–?g?Jdl. (3)
2. Проекция сил тяжести ? ?G на элемент ? ?
3. Проекция сил инерции ? ?M равна
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Административный регламент Министерства внутренних дел Российской Федерации исполнения государственной функции по контролю и надзору за соблюдением участниками дорожного движения требований в области обеспечения безопасности дорожного движения
Административный регламент Министерства внутренних дел Российской Федерации исполнения государственной функции по контролю и надзору за соблюдением участниками дорожного движения требований в области обеспечения безопасности дорожного движения Приложение к
13. Вечность проблемы вечного движения
13. Вечность проблемы вечного движения Я уже говорил о том, что к концу прошлого века армия изобретателей вечных механизмов была еще весьма внушительной. И хотя со временем людей, занятых поисками вечного движения, становилось все меньше, я так и не могу себе представить,
Глава 4 Системы движения и привода
Глава 4 Системы движения и привода В этой главе будут рассмотрены некоторые компоненты систем движения и привода, которые могут быть использованы в конструкциях роботов. Некоторые схемы подобных компонентов будут рассмотрены в этой главе, другие варианты конструкций
7. Анализ основного уравнения гидростатики
7. Анализ основного уравнения гидростатики Высоту напора принято называть пьезометрической высотой, или напором.Согласно основному уравнению гидростатики,p1+ ?ghA= p2+ ?ghH,где ? – плотность жидкости;g – ускорение свободного падения.p2, как правило, задается p2= pатм, поэтому,
21. Разновидность движения
21. Разновидность движения В зависимости от характера изменения поля скоростей различают следующие виды установившегося движения:1) равномерное, когда основные характеристики потока – форма и площадь живого сечения, средняя скорость потока, в том числе по длине,
22. Дифференциальные уравнения движения невязкой жидкости
22. Дифференциальные уравнения движения невязкой жидкости Уравнение Эйлера служит одним из фундаментальных в гидравлике, наряду с уравнением Бернулли и некоторыми другими.Изучение гидравлики как таковой практически начинается с уравнения Эйлера, которое служит
24. Форма Громеки уравнения движения невязкой жидкости
24. Форма Громеки уравнения движения невязкой жидкости Уравнения Громеки – попросту другая, несколько преобразованная форма записи уравнения Эйлера.Например, для координаты x Чтобы его преобразовать, используют уравнения компонентов угловой скорости для вихревого
26. Анализ уравнения Бернулли
26. Анализ уравнения Бернулли это уравнение есть не что иное, как уравнение линии тока при установившемся движении.Отсюда следуют выводы:1) если движение установившееся, то первая и третья строки в уравнении Бернулли пропорциональны.2) пропорциональны строки 1 и 2,
27. Примеры прикладного применения уравнения Бернулли
27. Примеры прикладного применения уравнения Бернулли Во всех случаях требуется определить математическую формулу потенциальной функции, которая входит в уравнение Бернулли: но эта функция имеет разные формулы в разных ситуациях. Ее вид зависит от того, какие массовые
29. Энергетический смысл уравнения Бернулли
29. Энергетический смысл уравнения Бернулли Пусть теперь имеем установившееся движение жидкости, которая невязкая, несжимаемая.И пусть она находится под воздействием сил тяжести и давления, тогда уравнение Бернулли имеет вид: Теперь требуется идентифицировать каждое
30. Геометрический смысл уравнения Бернулли
30. Геометрический смысл уравнения Бернулли Основу теоретической части такой интерпретации составляет гидравлическое понятие напор, которое принято обозначать буквой Н, где Гидродинамический напор Н состоит из следующих разновидностей напоров, которые входят в
31. Уравнения движения вязкой жидкости
31. Уравнения движения вязкой жидкости Для получения уравнения движения вязкой жидкости рассмотрим такой же объем жидкости dV = dxdydz, который принадлежит вязкой жидкости (рис. 1).Грани этого объема обозначим как 1, 2, 3, 4, 5, 6. Рис. 1. Силы, действующие на элементарный объем
35. Уравнение Бернулли для неустановившегося движения вязкой жидкости
35. Уравнение Бернулли для неустановившегося движения вязкой жидкости Для того, чтобы получить уравнение Бернулли, придется определить его для элементарной струйки при неустановившемся движении вязкой жидкости, а затем распространять его на весь потокПрежде всего,
46. Основные дифференциальные уравнения термодинамики
46. Основные дифференциальные уравнения термодинамики Дифференциальные уравнения в термодинамике используются для исследования реальных газов, при теоретических (и практических) вычислениях.Рассмотрим следующие случаи.1. Независимыми переменными являются параметры p,
44. Приборы для измерения параметров движения
44. Приборы для измерения параметров движения Рассмотрим такие параметры движения, как скорость, ускорение, угловые скорость и ускорение.Для измерения скорости поступательного перемещения достаточно знать длины пути и времени. Тогда средняя скорость: где ?S – длина