32. Что зашифровано на карте

Как увидеть акустические стоячие волны, точнее, осцилляции их амплитуды? Надо подвергнуть их гармоническому анализу, иными словами, разложить на мультиполи и посмотреть, как ведут себя коэффициенты разложения. Что такое мультиполи? Самый малый — это диполь (l = 1). Диполь показывает разницу в более яркой и менее яркой половинах неба. При этом основной вклад в диполь дает движение Солнечной системы вместе с Галактикой относительно усредненной системы покоя Вселенной — эта скорость около 600 км/с. Там, куда мы движемся, реликтовое излучение кажется ярче, а там, откуда движемся — слабее. Отделить диполь, связанный с аберрацией от нашего движения, от истинного диполя реликтового излучения невозможно, поэтому он просто выбрасывается из анализа. Следующий — квадруполь (l = 2), он отражает глобальную сплюснутость (или вытянутость) распределения яркости. И т. д.

Рис. 32.1. Разложение карты реликтового излучения, снятой WMAP за 9 лет наблюдений, по угловым мультиполям (спектр мощности). Традиционно изображают величину l (l+1) Cl. Из статьи G. Hinshaw et al. arXiv:1212.5226

Двумерное разложение сферической карты отличается от одномерного разложения Фурье тем, что каждый мультиполь l представлен суммой 2l + 1 членов со своими коэффициентами. Для того, чтобы увидеть, какие масштабы неоднородностей сильнее выражены, все эти коэффициенты не нужны — достаточно взять среднее от суммы их квадратов (традиционно обозначаемое как Сl). Соответствующее распределение называется спектром мощности, именно оно показано на рис. 32.1.

Высокий пик слева означает, что карта имеет самую контрастную пятнистость при размере пятна около градуса. Он соответствует акустическим волнам, пришедшим к моменту рекомбинации с фазой ?. За одно колебание они успели подрасти из-за гравитационного взаимодействия с темной материей, которая за это время «скомковалась» в сто раз сильней барионного вещества. Правее — следующие пики, соответствующие фазам 2?, 3? и т.д. Пики при увеличении номера мультиполя (уменьшении размеров неоднородностей) становятся ниже, потому что оказываются «замытыми» из-за диффузии фотонов, которые успевают частично разбежаться из сгущения вещества за период колебания стоячей волны. Это так называемый эффект Силка. Особенно хорошо этот эффект наблюдается на рис. 32.2, где тот же самый спектр мощности дан в логарифмическом масштабе и к нему добавлены данные наземных установок с меньшим охватом неба, но с лучшим угловым разрешением.

Черные точки с ошибками (те же, что и на рис. 32.1) — результат WMAP. Голубые точки — результат обзора небольшой части неба, сделанного с лучшим угловым разрешением с помощью микроволнового телескопа на Южном полюсе (SPT). Оранжевые точки — данные Космологического телескопа в Атакаме (ACT). Сплошная кривая — результат подгонки теории только к данным WMAP, данные при муль-типольных моментах больше тысячи не использовались!

Точки с наименьшими ошибками получены на микроволновом телескопе, расположенном на Южном полюсе (тарелка диаметром Юм) — там фон от теплового излучения атмосферы меньше, чем в не столь экстремальных местах.

Рис. 32.2. То же самое разложение, что и на рис. 32.1, но в логарифмическом масштабе и с добавлением данных наземных микроволновых телескопов (см.текст). Из статьи G. Hinshaw et al. arXiv:1212.5226

Осциллирующая кривая на рис. 32.2 поразительно информативна. Это примерно тоже самое, как если бы мы увидели на карте ранней Вселенной масштабную линейку с делениями в мегапарсеках, да и не только линейку — целую метеостанцию с различимыми показаниями на циферблатах. Причем эти показания точнее, чем можно извлечь из параметров современной Вселенной. В частности, положение пиков весьма чувствительно к кривизне Вселенной ?k — этот параметр примерно равен относительному отклонению суммы углов треугольника от 180°, если треугольник имеет размер с видимую часть Вселенной (вспомним надуваемый шарик на лекции С. П. Капицы — кривизна его поверхности дает наглядную аналогию). Оказывается, наша Вселенная с хорошей точностью «плоская» на масштабе горизонта (?k = -0,037 ± 0,043, если брать только данные WMAP и ?k = 0,001 ± 0,012, если привлечь также данные наземных микроволновых телескопов). Высота пиков чувствительна к относительного му вкладу барионов в содержимое Вселенной. Соотношение между вторым и третьим пиками зависит от вклада темной материи. И т. д.

Конечно, эффекты от всех этих и других параметров запутаны, и их извлекают не по отдельности, а все вместе посредством процедуры, называемой «подгонкой методом максимального правдоподобия». Для подгонки кроме данных нужна теоретическая модель, которая должна описать данные. В этом случае она слишком сложна, чтобы ее можно было выразить формулой. Модель включает в себя все процессы, о которых шла речь выше. Прежде всего это генерация начального спектра неоднородностей.

Мы писали о том, что относительная амплитуда начальных неоднородностей должна быть порядка 5·10-5, а их спектр — плоским. На самом деле мы не знаем точно ни того, ни другого. Поэтому амплитуда берется за один из подгоночных параметров. Спектр неоднородностей не обязан быть в точности плоским, даже если мы уверены, что источником неоднородностей является механизм космологической инфляции. Дело в том, что в процессе инфляции величина ответственного за нее поля хоть и медленно, но меняется — это дает спектру небольшой наклон, который тоже входит в число подгоночных (свободных) параметров. Далее концентрация обычного (барионного) вещества влияет на высоту пиков и соотношение между ними. Это третий свободный параметр. Темная материя дает неоднородный гравитационный потенциал, влияющий на акустические волны. Ее концентрация — четвертый свободный параметр. Далее — кривизна Вселенной, пятый параметр. От него будет зависеть угол, под которым мы видим пятно определенного размера и, следовательно, положение всех пиков. Похожий эффект дает темная энергия, от нее зависит время распространения фотонов после рекомбинации и, соответственно, расстояние, которое они пролетели. Так что плотность темной энергии — это еще один параметр. Правда, не все эти параметры независимы: полная плотность энергии во Вселенной в сумме с вкладом кривизны, пропорциональным ?k, должна давать критическую плотность. Так что пока свободных параметров пять.

И это еще не всё. Оказывается, состояние Вселенной после рекомбинации тоже влияет на карту реликтового излучения. Свободные электроны рассеивают излучение, что слегка замывает картину и требует учета. Электроны связываются в атомы в эпоху рекомбинации, но через сотни миллионов лет межгалактический газ снова меняет свое состояние — под действием ультрафиолетового излучения квазаров и звезд происходит вторичная ионизация. Выше рассказано про эффект Ганна — Петерсона, обнаруженный в спектре квазара с красным смещением 6,28. На самом деле то, что увидели, — это самый конец вторичной ионизации, когда атомов водорода в межгалактическом газе осталось совсем немного. Реально она произошла раньше при большем красном смещении. Когда именно, мы не видим. Поэтому это шестой свободный параметр.

Теперь осталось всё вычислить в зависимости от параметров — как развивались неоднородности темной материи в расширяющейся Вселенной, как колебались волны барионной материи и как они взаимодействовали через гравитацию с темной материей, как проходила рекомбинация вещества, как излучались фотоны реликтового излучения и как они распространялись по дороге. И многое другое. И подобрать такую шестерку параметров, которая наилучшим образом опишет данные, показанные на рис. 32.2.

Вот эти параметры с ошибками

Плотность барионов в единицах критической плотности ?b = 0,0463 ± 0,0024 Плотность темной материи в тех же единицах ?c = 0,233 ± 0,023 Плотность темной энергии в тех же единицах ?? = 0,721 ± 0,025 Относительная среднеквадратичная амплитуда первичных неоднородностей D2 = (2,41 ± 0,10)·10-9

Степенной индекс спектра первичных неоднородностей ns (ns = 1 соответствует плоскому спектру) ns = 0,972 ± 0,013 Красное смещение, соответствующее вторичной ионизации zr = 10,6 ± 1,1 Из этих результатов прямо следует: возраст Вселенной — 13,74 ± 0,11 млрд лет — точность лучше процента!

Это результаты всех 9 лет работы WMAP. Дальше начинается дополнительная игра: данные WMAP дополняются информацией, полученной другими методами, в частности, из обзоров неба обычными телескопами. Точность возрастает.

Одна из самых интересных вещей, которые при этом обнаруживаются, — отклонение спектра первичных возмущений от чисто плоского. Если привлечь всю имеющуюся информацию, то имеем результат для степенного индекса: ns = 0,9608 ± 0,0080 (пять стандартных отклонений от единицы, которая соответствует плоскому спектру). Это уже кое-что говорит о самом процессе инфляции. Более того, это было предсказано давным-давно — еще в 1981 году Вячеславом Мухановым и Геннадием Чибисовым: первичный спектр возмущений отличается от плоского именно на такую величину. Если это не триумф науки, то что вообще можно назвать триумфом? Да и вся 9-летняя миссия WMAP, при всей скромности затрат на нее, оказалась фантастически успешной. По мнению автора, по суммарному вкладу в фундаментальную науку она превосходит открытие бозона Хиггса.