Глава 6 Чрезвычайные обстоятельства: часть 2
Глава 6
Чрезвычайные обстоятельства: часть 2
В этой главе
• Опасность радиоактивного излучения.
• Не дать нейтронам просочиться наружу.
• Аварийная остановка реактора.
• Устраняем неполадки, возникшие при погружении.
Радиоактивное излучение — серьёзный фактор на борту подлодки. В результате ионизирующее излучение проходит через тело человека и разрушает молекулярную структуру организма. Такое излучение существует в двух формах — гамма-лучей (электромагнитные волны, очень похожие по природе на рентгеновские лучи) и нейтронов (крупных нейтрально заряженных частиц, которые способны разрушать ткани). Иногда альфа-излучение представляет опасность (альфа-частицы — атомы гелия без электронов). Если альфа-частицы попадут вам в лёгкие, у вас будут крупные неприятности.
Несчастный случай с атомным реактором
Реактор очень хорошо защищен свинцом и водой (свинец нейтрализует гамма-лучи, а молекулы водорода в воде останавливают и нейтрализуют нейтроны) в защитной ёмкости. Передняя и задняя балки, а также стены тоннеля реакторного отсека обиты свинцом и полиэтиленом.
Уровень излучения от нейтронов и гамма-лучей после свинцовых щитов низкий, но этот уровень контролируется путем проверки доз радиации, полученных любым, находящимся на подлодке, используя (повторяйте за мной, медленно) термолюминесцентные дозиметры (очень хорошо!), которые выдаются каждому члену экипажа.
Несколько категорий чрезвычайных ситуаций могут обречь судно на гибель. Основными из них являются: проблемы в системе охлаждения и потеря управления реактором.
Проблемы в системе охлаждения
В случае возникновения проблем в системе охлаждения основная водяная петля, по которой проходит вода через реактор для охлаждения топливных модулей, разрушается, и вода вытекает из трубы. Во многих случаях это может привести к падению давления в системе.
Когда происходит потеря давления и запасов воды, вода в реакторе вскипает и превращается в пар, вскрывая топливные модули. Температура топлива повышается до тех пор, пока оно не улетучится. Водород переходит в пузырьки пара вследствие тепловой реакции с циркониевым покрытием топливохранилища и от этого может воспламениться и нарушить работу реактора. Жидкое топливо в неисправной системе излучает огромные дозы радиации в окружающую среду.
Но бывает и еще хуже. Топливо в реакторе подлодки более взрывоопасное, чем в реакторе на атомной электростанции. В нем используется уран 235, высокооктановая разновидность, вместо природного урана (95 % урана 238, который находится в покое и 5 % урана 235, который распадается и выделяет теплоту). Если в результате неполадок в системе охлаждения уран 235 расплавится, то существует вероятность того, что он может создать критическую массу на дне активной зоны реактора. Далее возможно возникновение неконтролируемой ядерной реакции. В наименее вероятном случае он взорвется, как ядерная бомба, и судно просто-напросто испарится. В более вероятном случае это вызовет быстрый критический распад, что является неконтролируемой ядерной реакцией, которая заставляет топливо взорваться, хотя и не на полную мощность, но достаточно сильно, чтобы вскрыть реактор и корпус подлодки.
В случае неполадок в системе охлаждения команда старается доставить больше воды в основную систему и активную часть реактора. Необходимо использовать пресную воду, потому что морская вода разрушит части из нержавеющей стали в считанные часы. Если вода не может попасть в активную зону реактора из-за давления пара или пузырьков водорода, процесс остановить невозможно.
Некоторые говорят: «А почему бы просто не остановить реактор?» Этого будет недостаточно. Если ядро реактора приостановить при работе на полную мощность, то оно все равно сохраняет около 8 % мощности из-за остаточного тепла от распада и случайного распада урана. Если тепло не отвести от реактора, то ядерное топливо может просочиться наружу.
Термин «критическая» во фразе «реактор достиг критической массы» означает, что уровень нейтронов в активной зоне реактора способен поддерживать постоянную ядерную реакцию без уменьшения количества распадов. Критичность достигается в промежуточной стадии, незадолго до вхождения в мощностную фазу работы реактора. В мощностной фазе ядро реактора способно изменять температуру основного охлаждающего элемента. Если реактор субкритичен, это значит, что количество нейтронов уменьшается, а, следовательно, падает мощность.
Даже если ядерное топливо и не является в данный момент объектом ядерной реакции, оно может достигнуть температуры, достаточной для того, чтобы проникнуть сквозь реактор и корпус подлодки. В этом случае реакторный отсек полностью затопит. Размер пробоины имеет значение, потому что, если она будет достаточно велика, то судно может расколоться пополам.
Потеря контроля над реактором
Ещё одной разновидностью экстренных ситуаций является потеря контроля над реактором. Это может случиться по-разному, но в каждом из этих случаев повышается скорость реакции в активной зоне реактора. Мощность реактора регулируется рычагами. Если эти рычаги случайно сдвинуты с места, то мощность реактора повышается до отметки взрыва из-за переизбытка пара внутри реактора. Паровой взрыв происходит, когда вода получает от топлива энергии больше, чем она может принять. Вода превращается в пар большой температуры и большого давления. В некоторых случаях реактор может разлететься на куски, как, например, в испытательной лаборатории SL-1 в местечке Айдахо Фолз, когда вследствие этого погибли три оператора (см. следующий раздел «Трагедия в Айдахо фолз: SL-1»).
На одной из подлодок класса «Sturgeon» проходили учения по остановке реактора.
Во время остановки реактора предпринимались экстренные действия для восстановления мощности и недопущения повреждения реактора. Команда начала восстанавливать мощность реактора — эта процедура называется «быстрый восстановительный запуск». Во время ее проведения реактор восстанавливает мощность в 50 раз быстрее, чем реактор на атомных электростанциях.
Эта процедура настолько опасна, что ее разрешается проводить только на расстоянии более 50 миль от побережья. Во время восстановления мощности рычаг управления неожиданно вышел из строя.
Команда управления реактором была в таком шоке от этого странного события, что они полностью сконцентрировались на сломанном рычаге, а не на том, что переключатель «замер» в позиции «рычаги выключены». Уровень мощности реактора продолжал повышаться с выключенными рычагами. Вместо положенных 10–5 в минуту и режиме запуска, активная зона реактора работала в промежуточном режиме на 10–10 в минуту. Проведенные позднее расчеты показали, что реактор был в 6 секундах от критичного уровня, повлекшего бы за собой взрыв от пара и раскол корпуса подлодки.
В режиме 10–10 схема защиты реактора перезапустила его. После того как был написан отчет об этом инциденте и проведены расчеты, лидер инженерной команды, вахтенный инженер, придумал церемонию, во время которой он встает на колени перед панелью управления реактором, которая спасла подлодку, а потом целует монтажную плату.
Режимы работы
При остановке ядерного реактора, уровень ядерной реакции уменьшается в десятки раз. Реактор переходит из мощностного режима (в котором ядерная реакция способна повышать температуру охлаждающей жидкости) в промежуточный режим (в котором в реакторе все еще происходит довольно интенсивная реакция, но он уже не способен повышать температуру охлаждающей жидкости). Промежуточный режим находится в диапазоне от 10–5 до 10–14. Режим запуска находится в диапазоне от 10–3 до 10–14 (разные узлы). В начале режима запуска существует так называемый «нулевой» уровень, при котором уровень радиации настолько мал, что его нельзя измерить, но она все равно присутствует.
Когда вы производите быстрый запуск реактора после его остановки, вы переводите реактор из режима запуска в промежуточный режим, поворачивая рычаги и контролируя показания приборов запуска. Вы сохраняете режим. 10–5 в минуту, и он набирает мощность. В конце режима запуска вы считываете показания счётчика и переключателя, сохраняя режим 10–5 в минуту. Когда мощность активной зоны реактора приближается к верхней границе промежуточного режима, вы увидите, что стрелка указателя мощности передвинется с 0 % на 1 % — вы вошли в мощностной режим. Теперь вы можете запускать пар в машинное отделение.
Неполадки в системе охлаждения
Ещё одной разновидностью потери контроля над реактором являются несчастные случаи с холодной водой. Большинство процессов в реакторе проходят при рабочей температуре 260 °C. Сначала необходимо отметить, что основное отличие между ядерным реактором и ядерным оружием состоит в утечке нейтронов.
Ядерная реакция происходит, когда ядро нестабильного урана 235 бомбардируют медленные нейтроны (быстрые промчатся мимо). В результате процесса ядро распадается и высвобождает 2 или 3 быстрых нейтрона. Нейтроны должны быть «замедлены» для того, чтобы следующая ядерная реакция была возможна. Если все быстрые нейтроны, кроме одного, «вытекут» из реактора, а этот оставшийся станет медленным, то ядерная реакция может произойти и мощность реактора останется прежней. Если и этот единственный нейтрон вырвется наружу, то ядерная реакция приостановится и мощность реактора будет падать. Чем меньше нейтронов будет вырываться из реактора и чем большее их число будет становиться медленными, тем больше будет расти мощность реактора.
Модератор — это то, что минимизирует утечку нейтронов и замедляет быстрые нейтроны. В реакторе подлодки, находящемся под большим давлением, роль модератора выполняет вода, которая течёт сквозь активную зону реактора на пути к паровым котлам, — вода выполняет две функции в качестве охлаждающей жидкости.
В реакторе, где в качестве охлаждающего вещества используется газ, охлаждающее вещество, которое переносит тепло к паровым котлам, не выполняет роли модератора. В этом случае модератор требуется добавлять в активную зону реактора в виде графита. В воде лишь водород выступает в качестве модератора. Атомы кислорода в воде связывают электроны двух атомов водорода, так что атомы водорода, «торчащие» с двух сторон молекулы воды, на самом деле протоны в чистом виде, которые имеют такой же молекулярный вес, что и нейтроны. И, подобно бильярдному шару, нейтрон теряет скорость, когда он сталкивается с объектом такого же размера, как и он. Бильярдный шар, отталкиваясь от борта, передает минимум энергии массивному столу. Если же он сталкивается с объектом, соотносимым с ним по массе, т. е. шаром, то энергия перелается тому шару, с которым он сталкивается, а сам он останавливается. Точно так же водород воды замедляет нейтроны до такой степени, чтобы они были способны столкнуться с ядром урана для того, чтобы произошла еще одна реакция.
Плотность воды имеет большое значение для ее эффективности в качестве модератора. При 150 °C вода имеет гораздо большую плотность, чем при 260 °C. Итак, если реактор работает стабильно при 260 °C, и неожиданно вода при 150 °C впрыскивается в активную зону реактора, то холодная вода замедляет нейтроны гораздо эффективнее, меньшее их число вырывается наружу. Соответственно происходит большее количество ядерных реакций и повышается мощность реактора. Если одна петля из двух временно не выполняет свою функцию, то вода в ней может остыть до 121 °C. Неожиданно насосы этой петли начинают качать воду внутрь активной зоны реактора, При этом мощность реактора возрастает до 10 000 %. Произойдет взрыв пара и корпус гарантированно получит повреждения. Это и называется «несчастный случай с холодной водой». Вот поэтому реактор, работающий с системой охлаждения, в которой остается лишь одна петля, представляет большую опасность.
Чтобы восстановить незадействованную петлю, реактор специально приостанавливают. Затем включают насосы петли, и лишь потом реактор снова запускают, используя процедуру быстрого запуска. Это называется «вниз-и-вверх», и эту процедуру можно производить, не поднимаясь на поверхность.
Другие виды неполадок, связанных с работой реактора
Другие неполадки тоже могут иметь место, но они не идут ни в какое сравнение по опасности с только что описанными.
• Неполадки в системе защиты реактора происходят, когда вода вытекает из защитной ёмкости реактора, что приводит к резкому повышению уровня радиоактивного излучения.
• Неполадки в системе очистки охлаждающей жидкости происходят, когда фильтр из смолы, который очищает охлаждающую жидкость от микроскопических металлических частиц высокой радиоактивности, выходит из строя. Повышается уровень радиоактивности охлаждающей жидкости, что приводит к заражению команды.
• Может выйти из строя механизм управления рычагом, топливо испаряется, и повышается уровень радиоактивности.
• Бывает еще хуже; комбинация неполадок в системе управления рычагом и потери давления.
• Может произойти коррозия топливного модуля и заражение охлаждающей жидкости в основной петле.
• И, наконец, течь первой-второй степени может образоваться в трубах парового котла, что сделает радиоактивной паровую петлю. А так как часть этой петли вентилируется атмосферным воздухом с помощью оборудования в машинном отделении, которое берет газы из паровой петли, в корпус подлодки попадет радиация от подобной течи.
С этими неполадками подлодка может функционировать до тех пор, пока не удастся зайти в порт. Или реактор может быть приостановлен, а подлодка всасывать воздух с помощью дизеля и использовать аварийный мотор, пока не подоспеет буксир.
Неполадки на русских подлодках
На американском флоте ни разу не происходило крупных аварий ядерных реакторов, повлекших за собой выход оборудования из строя или жертвы среди личного состава. В русском флоте ситуация обстоит по-другому. Более 500 человек погибли во время несчастных случаев на русских подлодках, многие из которых произошли из-за неполадок в реакторе. Некоторые из них случились во время строительства или дозаправок, другие — на море.
• В 1960 году на подлодке К-8 класса «Ноябрь» произошла утечка ядерного топлива первой-второй степени. В результате вся подлодка оказалась заражена, а команда подверглась воздействию излучения, равного 200 рентгенам и более.
• Команда вынуждена была войти в реакторный отсек, чтобы попытаться устранить неполадку и восстановить приток воды к реактору. Попытка спасла-таки подлодку, по члены экипажа подверглись сильнейшему облучению: 8 человек умерли после получения дозы в 5000 бар.
• В 1968 году на подлодке К-27 произошёл сбой в защитной системе реактора. Когда индикаторы на панели управления реактором показывали падение мощности, это происходило из-за течи воды из защитной ёмкости. Система управления больше не давала объективного представления о состояния реактора. Вместо того чтобы показывать повышение мощности, как если бы защитные ёмкости были полны, приборы показывали низкий уровень радиации, а следовательно, падение мощности. Вода в защитной ёмкости замедляла быстрые нейтроны, позволяя оборудованию снимать уровень мощности. Без защитной ёмкости контрольное оборудование переставало «видеть» нейтроны, потому что они просачивались наружу и не замедлялись. Из-за утечки воды из ёмкости оборудование показывало снижение мощности, когда на самом деле мощность росла. Чтобы вернуть мощность на прежний уровень, который, как считали операторы, должен быть, они повернули рычаги (но на самом деле уровень мощности реактора был высок). Это действие перегрузило реактор, и 20 % топлива расплавилось. Позже операторы поняли, что произошёл сбой в системе управления, но к этому времени урон был настолько велик, что судно пришлось затопить несколько лет спустя в Карском море.
• В 1982 году на подлодке К-123 класса «Альфа» произошла утечка топлива первой-второй степени, но в реакторе «Альфы» в качестве охлаждающей жидкости использовался жидкий металл (смесь висмута и свинца). В результате неполадки 2 тонны жидкого металла вылились в реакторный отсек. В итоге реактор испытал недостаток охлаждающей жидкости, и топливо внутри него расплавилось. Реактор был настолько серьезно поврежден, что потребовалось целых 9 лет, чтобы восстановить его.
• В 1985 году подлодка К-314 класса «Виктор-1» остановилась на заправку в заливе Чашма, недалеко от Владивостока. Во время заправки крышка реактора была поднята неправильно, в результате чего были сдвинуты рычаги управления. В реакторе ускорился процесс распада частиц. В итоге 6 километров полуострова Шотово были заражены, погибли 10 человек.
• В 1989 году на подлодке К-192 класса «Эхо-II» произошла утечка охлаждающей жидкости, в результате которой были загрязнены воды Норвежского и Баренцева морей.
Другие 14 неполадок на русских атакующих подлодках имели менее суровые последствия и поэтому стали объектом не столь пристального внимания.
Рем — единица, призванная хоть как-то стандартизировать дозу излучения для гамма-лучей и нейтронов. Для половины людей смертельной является доза в 1000 бар. Если вы получили дозу в 1500 бар и более, то вряд ли вы выживете. Даже доза в 10 бар может принести большой вред, если излучение пришлось в район головного мозга. Безвредная доза равна 0,1 бар и менее.
Защищаем ядерный реактор
Ядерный реактор на подлодке должен быть защищен 4-мя факторами:
• Отличный продуманный дизайн, который учитывал бы безопасную эксплуатацию и обслуживание.
• Высокопрофессиональные операторы и обслуживающий персонал.
• Периодические проверки процедур эксплуатации и обслуживания со стороны организаций, отвечающих за ядерную безопасность.
• Постоянное повышение квалификации персонала, а также обращение к материалам предыдущих трагедий, произошедших на флоте.
Эти четыре фактора были обозначены адмиралом Химаном Риковером, отцом американского атомного флота.
Трагедия в Айдахо Фолз: SL-1
Реактор SL-1 был прототипом морского ядерного реактора. Пилотный экземпляр реакторов этого класса обслуживался в местечке Айдахо Фолз, когда поступил сигнал о радиоактивном заражении местности из отдаленного пожарного отделения. Спасатели пришли к выводу, что уровень радиации слишком высок, чтобы продолжать поиски. К тому времени они обнаружили тела трёх операторов. Дальнейшее расследование инцидента постановило, что причинами аварии могла стать, во-первых, несовершенная конструкция реактора — реактор мог достигнуть критической массы только благодаря одному рычагу. Второе — рычаг, регулировавший химический состав внутри реактора, был спроектирован не лучшим образом: рычаги управления были подвержены коррозии. И последней причиной аварии могла явиться ошибка оператора, если один из операторов дернул рычаг управления активной зоной реактора слишком резко. Физические расчеты показали, что скорость движения рычага гораздо важнее в деле повышения скорости реакции, чем расстояние его движения. Поэтому рычаг, резко сдвинутый на миллиметр, может повлечь за собой гораздо более серьезные последствия, чем тот же рычаг, сдвинутый медленно на 10 миллиметров.
В любом случае, в реакторе была запущена быстрая ядерная реакция, в результате чего мощность возросла от 1000 до 10 000 процентов за несколько миллисекунд. Произошел мощный взрыв пара, и реактор поднялся над землей на 3 метра. Два оператора погибли на месте, еще один был ранен в результате попадания в него рычага управления, вылетевшего из реактора. Оператор в центре управления погиб от большой дозы радиации, прежде чем он успел поднять телефонную трубку и позвать на помощь. Потребовались годы, чтобы ликвидировать последствия аварии. Дело было закрыто для доступа на несколько десятилетий после этого страшного события, чтобы не бросать тень на правительство и не приостанавливать эксперименты в области мирного использования атомной энергии.
Утечка пара
Утечка пара относится к особой категории аварий на подлодке. Паровая магистраль тщательно спроектирована, местами толщина труб достигает 2,5 сантиметров, чтобы выдерживать внутреннее давление пара и не подвергаться коррозии со временем. Это потому, что пар из паровых котлов не полностью газообразный, он содержит в себе жидкость. Влага, содержащаяся в паре, способна разрушить и толстостенные трубы. Поток пара движется по трубопроводу с возрастающей скоростью по мере того, как его температура повышается с 15 °C (температуры окружающего воздуха) до рабочей температуры более 238 °C. Из-за этой огромной разницы температур металл, из которого сделаны трубы, расширяется, и труба может стать длиннее на несколько сантиметров. Чтобы этого не произошло, в трубопровод над турбинами вмонтированы кольцевые конвейеры. Но, несмотря на эти меры предосторожности, иногда труба может разрушиться.
Утечка пара из прохудившейся трубы — трагедия вдвойне. Во-первых, пар из основной паровой магистрали заполнит машинное отделение, и вахтенные поджарятся как лобстеры. Пар в этом случае представляет собой не безобидную струйку из носика вашего чайника, он обладает достаточной энергией, чтобы разрубить человека пополам или в считанные секунды поджарить его.
Это — трагедия вдвойне, потому, что эта неполадка перегружает реактор, забирая слишком много энергии из охлаждающей жидкости. В результате вода, поступающая в реактор, имеет слишком низкую температуру, медленных нейтронов становится больше, следовательно, возрастает число реакций распада. Реактор немедленно реагирует на сложившуюся ситуацию. А когда вахтенный, отвечающий за скорость подлодки, добавляет «газу», открывая основные паровые дроссели двигателя, в реактор начинает поступать холодная вода, и его мощность растет. В случае утечки пара происходит короткое замыкание в электропроводке турбин, и пар просто опустошает машинное отделение. Мощность реактора резко подскакивает. В результате образуется пара еще больше, чем в ходе утечки.
Мёртвые вахтенные в машинном отделении являются признаком того, что защитная система реактора приостановила его во время перегрузки, но неожиданная утечка пара привела к разжижению топлива, прежде чем работа реактора была приостановлена системой безопасности.
Потом возникает проблема отвода избыточного тепла, выделившегося в результате реакций, экстренной системой охлаждения. В противном случае топливо может расплавиться. Мёртвые вахтенные реакторного отсека и реактор без экстренного охлаждения ставят подлодку под угрозу гибели.
Быстрая ликвидация последствий утечки пара, предположив, что команда пережила взрыв пара, происходит так: оператор за панелью управления реактором должен перевести выключатели изоляционных клапанов MS-1 и MS-2 в положение «закрыто».
К сожалению, этим клапанам требуется от 20 до 30 секунд, чтобы остановить поступление пара. А их закрытие приводит к потере хода в случае двойной аварии, такой как затопление. Второе, что необходимо сделать, это открыть дроссели, чтобы попытаться выпустить пар в основной конденсатор.
Следующим шагом будет поиск места утечки пара и его изоляция, затем необходимо восстановить неповрежденную часть установки. Если утечка произошла на впуске левой турбины, основной паровой клапан MS-4 должен быть закрыт, чтобы изолировать левую турбину. Затем необходимо повысить давление путём открытия клапанов MS-1 и MS-2, чтобы проверить, работает ли изоляция. Затем клапаны MS-1 и MS-2 по правому борту машинного отделения должны быть снова открыты и запущены, чтобы вернуть ход подлодке.
Авария, связанная с боеголовками и ракетным топливом
В 1968 году подлодка «Скорпион» класса «Скипджэк» возвращалась после долговременного патрулирования в районе Средиземного моря. Она так и не достигла порта. Потребовалось провести вычисления, чтобы определить ее местоположение. Когда поняли, где она находится, глубоководный аппарат был спущен на дно океана. Парус подлодки с оторванной верхней частью лежал на боку, один плавник зарыт в песок. В носовом отсеке было замечено отверстие в боку. Отсек, скорее всего, затопило, так как он не был поврежден избыточным давлением.
Отсеки задней части подлодки были в гораздо более плачевном состоянии. Давление было настолько велико, что винт вместе с задней частью подлодки был вмят внутрь. Внимание экипажа глубоководного аппарата было сконцентрировано на отверстии в передней части подлодки. В первых сообщениях, полученных со «Скорпиона», говорилось о том, что подлодка подверглась торпедному удару. Это означало, что подлодка была потоплена советской субмариной.
Но более тщательное расследование деталей происшествия показало, что взрыв произошел внутри подлодки вследствие детонации одной из торпед. Восстановление последовательности событий показало, что вахтенный в торпедном отсеке проверял работоспособность торпедной системы Mark 37 в рамках очередного этапа обслуживания.
Для этого требовалось снять крышку и проверить напряжение тестером. Тестер создавал иллюзию того, что торпеда находится в воде и направляется к цели. Либо измерение было произведено неверно, либо торпеда была неисправна или присутствовало и то и другое, В любом случае, торпеда «решила», что находится в воде и направляется к цели. Двигатель торпеды запустился внутри торпедного отсека.
Это называется «горячим запуском». Инструкция гласит, что в этом случае дежурный офицер обязан попытаться развернуть судно как можно быстрее. Если ему удастся развернуть судно более чем на 180°, то система торпеды остановит ее. Эта система предотвращает возможность попадания торпеды в судно, с которого она была запущена.
Но либо маневр был не завершён, когда торпеда была приведена в полную боевую готовность, либо система предотвращения была неисправна. В этой ситуации боеголовка должна сдетонировать, когда датчик покажет, что поблизости находится корпус подлодки. Торпеда находилась в торпедном отсеке, а следовательно, датчик сработал, система торпеды получила сигнал о близости подлодки, и торпеда взорвалась. Все боеприпасы и торпедное топливо, находившееся в торпедном отсеке, по-видимому, тоже взорвались. Балку отсека взрывом отбросило в соседний отсек, который был затоплен, а поэтому не взорвался. Затопленные передние отсеки подлодки потянули подлодку на дно, вследствие чего взорвались реакторный отсек, второе машинное отделение и отсек двигателя.
Трагедия подлодки «Курск»
12 августа 2000 года подлодка класса «Оскар 11» «Курск» Российского Северного флота поднялась на перископную глубину в рамках учений по запуску торпеды образца 1957 года.
У команды подлодки возникли проблемы, когда произошла утечка торпедного топлива (пероксида водорода). Топливо сконтактировало с металлическими частями торпеды или пусковой установки. В этом случае выделяющийся кислород легко возгорается от искры при утечке пероксида водорода и порождает пожар, который практически невозможно потушить.
В течение двух минут сдетонировали топливо и боеголовки других торпед, уничтожив первый отсек, повредив и затопив второй и, возможно, третий отсеки. Пожар явился источником дыма и оксида углерода, которые и стали причиной гибели большей части экипажа.
23 члена экипажа оставались в живых в течение 8-ми часов и были эвакуированы в 9-й отсек подлодки. Но они погибли, а отсек был затоплен задолго до того, как глубоководные аппараты и команда спасателей смогли прибыть на место, чтобы открыть спасательный люк.
Этот случай указывает на опасность, которую представляет для подлодки ее собственная система вооружения: она может потопить подлодку. В результате безопасность судна стала объектом пристального внимания разработчиков, а подготовка команд подводников стала проводиться по другой схеме. Использование пероксида водорода в качестве ракетного топлива теперь стало крайне нежелательно, так же как и внутренней топливной системы подлодки. В американских торпедах сейчас топливо располагается в контейнерах внутри торпеды и не требует обслуживания. Это уменьшило число аварий. Торпеды Mark 48 нового поколения были доработаны по сравнению с их предшественниками, торпедами Mark 37, что также привело к повышению безопасности на американских подлодках.
Неполадки в системе управления (заклинивание плавников)
Неполадки в системе управления случаются, когда появляются неполадки в гидравлической системе смазки носовых или хвостовых плавников. Отказ гидравлической системы привода плавников, который заставляет лодку погружаться под углом, является одной из самых серьезных неполадок. Заклинивание хвостовых плавников самый худший вариант: хвостовые плавники обладают силой для того, чтобы тянуть подлодку вниз, потому что они находятся на большом расстоянии от центра тяжести судна.
Здесь нужно сказать несколько слов о графике соотношения глубины погружения и скорости подлодки. Он показывает, что чем глубже погружается подлодка, тем больше должна быть ограничена ее максимальная скорость. Например, на килевой глубине в 180 метров судно может двигаться с любой скоростью от «полный стоп» (висение на скорости 0 узлов) до «полный вперёд» (охлаждающие насосы работают на полной скорости, реактор работает на 100 % мощности). Но на глубине свыше 200 метров судно погрузилось уже довольно глубоко и вынуждено двигаться с минимальной скоростью. Еще глубже скорость судна повышается, на тестовой глубине оно должно двигаться на скорости не менее 10 узлов, чтобы в случае затопления у нее было достаточно скорости для поднятия на поверхность, используя носовые плавники или даже с помощью экстренного взрыва в балластных ёмкостях.
На глубине 200 метров максимальная скорость подлодки ограничена, и чем глубже погружается судно, тем более строгими становятся ограничения скорости. И, наконец, на тестовой глубине судну разрешается двигаться со скоростью не более 20 узлов. Эта скорость связана с заклиниванием хвостовых плавников. Если судно движется на полной скорости на тестовой глубине и происходит отказ гидравлической системы, то судно погружается на опасную глубину до того, как команде удается что-то предпринять.
Все атакующие подлодки двигались на полной скорости на тестовой глубине, потому что в тактических ситуациях инструкция, содержащая график зависимости скорости от глубины погружения, выкидывается в мусорное ведро. Вот почему почти все моряки-подводники начинают свои рассказы не словами «Однажды…», а так: «И вот я на тестовой глубине на полном ходу, когда вдруг…»
Меры предосторожности
Вот список действий в случае заклинивания хвостовых плавников:
• Рулевой говорит: «Заклинивание хвостовых плавников!»
• Офицер, отвечающий за погружение, командует: «Полный назад!»
• Старший вахтенный офицер включает сирену и объявляет «Заклинивание хвостовых плавников!» по системе внутренней связи 1МС (к этому моменту подлодка уже может на всех парах нестись по направлению к океанскому дну под углом 40°).
• Вахтенный, управляющий носовыми плавниками, дергает рычаг управления, пытаясь перевести плавники в крайнее верхнее положение и создать противовес заклинившим хвостовым плавникам.
• Старший вахтенный офицер стоит у рычагов управления экстренным взрывом балластных ёмкостей.
• Дежурный офицер принимает решение, взрывать ли балластные ёмкости или нет. Скорее всего он отдаст приказ о взрыве передних балластных ёмкостей, чтобы увеличить выталкивающую силу в носовой части для противовеса движению подлодки, направленному вниз.
• Рулевой пытается задействовать дополнительную гидравлическую систему, чтобы вернуть плавники в исходное положение. Если это ему не удастся, он переключается на аварийную гидравлическую систему и пробует сдвинуть плавники с ее помощью. Если и это не удастся сделать, то вахтенные инженеры в задней части подлодки начинают готовиться принять на себя местное управление хвостовыми плавниками и устранить проблему в гидравлической системе.
Выход из сложившейся вследствие заклинивания хвостовых плавников ситуации может быть очень сложным, даже если эти экстренные меры сработают, потому что взрыв передних балластных ёмкостей и команда «полный назад!» могут направить судно вверх во время движения назад.
Тренировочное оборудование для отработки погружений располагается на огромных гидравлических стойках, которые позволяют операторам тренировочного центра задавать угол наклона вверх или вниз. Ощущения, которые испытываешь при погружении с заклинившими хвостовыми плавниками под большим углом, не из приятных, Если вы проберетесь через спальные места и закричите на ухо уснувшему вахтенному: «Заклинивание хвостовых плавников!», он ответит: «Полный назад!», прежде чем полностью проснётся.
Другие неполадки в системе управления могут быть довольно проблематичными в тактических ситуациях, так как, например, подъём на поверхность с заклинившими хвостовыми плавниками заставляет судно «выпрыгивать» из воды. Это крайне нежелательно, когда подлодка пытается скрыться от вражеского флота или преследует судно противника. Обычно неполадки в системе управления, при которых не происходит заклинивания хвостовых плавников, устраняются относительно просто.
Когда я впервые посмотрел фильм «Лодка» («Dasboot»), я вскрикнул: «Полный назад!», когда на немецкой подлодке заклинило хвостовые плавники. Через секунду командир подлодки отдал приказ: «Полный назад!»
Столкновение на море (аварийное погружение)
Согласно статистике, столкновение на море может принести вам кучу неприятностей. Предотвращения столкновений добиваются в результате интенсивных тренировок. Но иногда, как только перископ появится на поверхности воды, дежурный по судну увидит судно в опасной близости от подлодки и даст приказ на аварийное погружение.
Столкновение остается большой проблемой, потому что оно может повлечь за собой другие неприятности, например, пожар или затопление. Если после столкновения на судне открылась течь, то команда управления подлодкой может подняться на поверхность, используя экстренный взрыв в балластных ёмкостях или носовые плавники. Если затопление приняло катастрофические масштабы, повреждённый отсек изолируется. Но если незатопленными остаются всего три отсека на подлодке класса «Лос-Анджелес», то подлодка, скорее всего, обречена. Экипаж попытается остановить затопление и может добиться успеха, если причиной затопления стала неполадка в трубопроводе. Но если вода поступает на борт через пролом в корпусе судна, данную ситуацию можно назвать катастрофической.
В заключение хочется сказать, что атомная подлодка — оружие, применяемое на передовой, и оно остается самым опасным родом войск в вооруженных силах после авиации ВМС.
Минимум того, что вам нужно знать:
• Радиоактивное излучение — серьёзная проблема на борту подлодки.
• Неполадки в работе ядерного реактора могут возникнуть по целому ряду причин.
• Экстренные меры, которые принимаются при остановке реактора — восстановить мощность и не нанести вред реактору.
• Утечка пара на подлодке может привести к столь же пагубным последствиям, как и сам пожар.
• Хотя предотвращение столкновения и является одним из главных моментов в программе обучения моряков-подводников, вероятность столкновения остается всегда.
• Проблемы при погружении возникают в том случае, если система управления задает неправильные параметры погружения.