Глава 10 Системы датчиков
Глава 10
Системы датчиков
В этой главе
• Слушаем внимательно.
• Ищем иголку в стоге сена.
• Изолируем шумы.
• Смотрим внимательно.
На глубине 20–30 метров так темно, что мало что можно увидеть, используя видимый свет. Чтобы не блуждать в темноте, на всех этапах развития подлодок специалисты пытались разработать такой прибор, который помог бы экипажу подлодки «видеть в темноте». Результатом исследований явилась система датчиков, которая выступает в роли глаз и ушей судна.
Забудьте всё, что видели в кино
Во-первых, забудьте всё, что вы видели в кино. На подлодке нет никакого «радара», который указывает местоположение и расстояние до объекта, Прибор, больше всего напоминающий «радар» в том виде, как вы его себе представляете, это активный сонар. Сфера сонара в носовой части посылает звуковые импульсы в воду и затем выключается и ждет возвращения сигнала, отраженного от цели. Хотя эта система и установлена на подлодках и команда обучается пользоваться ею, в тактических условиях она почти бесполезна.
Посылка сигнала активным сонаром «выдаёт» подлодку, а в нашем деле главное — скрытность. Представьте грабителя, который залез к вам в дом кричит: «Эй, есть кто-нибудь дома?» Не очень хорошая идея, правда?
В некоторых тактических ситуациях можно выгодно использовать сонар. Например, когда противник знает, что вы где-то рядом, вместо того, чтобы вертеться вокруг него, вы посылаете сигнал сонара, чтобы установить его точное местоположение только для того, чтобы тут же выпустить в него торпеду Mark 48. Пульсация активного сонара движется в воде со скоростью звука, отражается от цели и возвращается. Обратный сигнал обрабатывается «ушами» подлодки, называемыми гидрофоном. Время между посылкой сигнала и его возвращением измеряется долями секунды. А так как компьютеру известна скорость звука в воде, расстояние до цели будет равно скорости звука, умноженной на время.
Это хорошо работает в теории, но не на практике. Цель «возвращает» эхо посланного сигнала, но сигнал отражается также от волн на поверхности и примесей, содержащихся в воде.
Фильтры Доплера помогают «отфильтровать» сигналы от реального объекта и эхо. Это электронные приборы, которые не принимают никакие сигналы, кроме посланных движением цели.
Эффект Доплера ощутим, когда поезд даёт гудок при своём приближении. Звуковая волна сжимается, делая звук более высоким, чем когда он проходит мимо. Когда поезд удаляется, то звуковая волна рассеивается, делая звук более низким. Также и в нашем случае: цель, приближающаяся к вам, повышает частоту звука, то время как удаляющаяся понижает её.
Когда компьютер выдает все частоты, близкие к посланному сигналу, цель появляется на экране. Результат, выводится на экран с прямоугольными координатами, а не с круговыми, как на экране радара.
Курс 000 (север) находится в центре, справа от него расположены деления от 0° до 180°. Деления от 181° до 359° находятся слева от центра. Интенсивность поступающего активного сигнала и расстояние рассчитываются вертикально с помощью точек. Направление с самым большим числом активных точек — активное направление возврата сигнала, а вертикальное деление с преобладанием активных точек — местоположение цели. В реальности, когда на кону стоит жизнь подлодки, пытаться прочитать информацию с активного сонара — это все равно что считать чайные листочки. Полученный результат порой не стоит затраченных вами усилий. Обычно лучше использовать пассивный сонар для проведения анализа движения цели.
Вероятность сбоя в системе сонара возрастает во время нахождения подо льдом, когда огромные глыбы льда отражают сигналы со всех сторон. У вас на экране появляется лишь расплывчатое пятно.
Русские довели сонар до совершенства. Они используют высокочастотный активный сонар, чтобы подтвердить расстояние до цели, за мгновение до того, как выпустить торпеду. Основной активный сонар проходит в классификации НАТО под названием «деревянная колода», потому что он издает звук, похожий на тот, который получается, если ударить одной деревяшкой о другую. Если вы услышали этот звук, то позовите дежурного офицера и скажите ему, что необходимо произвести быстрый пуск ракеты или торпеды, не тратя время на прицеливание, потому что вы в шаге от того, чтобы «поймать» русскую торпеду.
Преимущество подводника: пассивный широкополосный сонар
Пассивный сонар — преимущество подводника. Он состоит из комплекта микрофонов, которые «слушают» подводные звуки (знающие люди называют их гидрофонами). Пластинки гидрофонов располагаются поверх металлических пластин корпуса. Эти гидрофоны «слушают» звуки океана на всех частотах.
Сферическая поверхность с гидрофонами заключена внутри конуса из фибергласа в носовой части подлодки. Купол сонара — зона свободного затопления, поэтому сфера постоянно погружена в воду и слушает окружающие звуки на всех частотах. Слушание на всех частотах одновременно называется широкополосным. Это похоже на то, как если бы слушали радио, которое принимало бы все радиостанции одновременно, а вам бы нужно было выделить звук одной из всех других.
Если вы слушаете с помощью гидрофонов звуки на определённом направлении (сфера позволяет выбрать определенные пластинки, повернутые в нужном направлении), вы услышите шум дождя, журчание ручья, ветер в деревьях или шум волн, разбивающихся о берег, — всё это так называемые «белые шумы», или широкополосные шумы. Шум будет громким в направлении движения судна, близкого или далёкого.
Дисплей системы широкополосного сонара называют «водопадным». Просто потому, что он напоминает водопад. Обычно на нем отражаются звуки вокруг судна. Каждую секунду экран показывает звуки на всех направлениях. Некоторые из них громкие, другие тихие. Громкий звук отражается более яркой точкой, чем тихий. На экране по горизонтали отмечены курсы: 000 (север) в центре, курс 180 справа и курс 181–359° слева. Время отображается на вертикальной шкале, поэтому информация спускается каскадом вниз. Если одно судно находится на курсе 045, а другое на курсе 120, эти направления осветятся яркой линией, тянущейся вертикально вниз.
Только что пришедшая информация расположена внизу, а старая — вверху. Если судно на курсе 045 и только что было на курсе 040, то линия отклонится вправо (это называется правым отклонением от курса).
Недостатком пассивного сонара является то, что показывается лишь курс судна, а не расстояние до него. Когда я узнал это, я не мог поверить — какой толк от того, что вы знаете только курс судна? Оказывается, чтобы выяснить расстояние до цели, вам нужно маневрировать взад-вперёд, принимая информацию о цели, и смотреть за изменением курса. Вы, наверное, издеваетесь надо мной? Я спросил. У вас что, есть время двигаться туда-сюда и принимать информацию во время боя?
Ответ состоит из двух частей.
• Во-первых, да, у вас есть время. У вас есть звуковое превосходство над целью, поэтому вы услышите её задолго до того, как она услышит вас. Вы делаете все это скрытно.
• Во-вторых, вам требуется около 3–4 минут, и столько же времени нужно для того, чтобы привести в готовность торпеду и пусковую установку.
Определение расстояния до цели при помощи маневрирования называется анализом движения цели. Курс цели — главная переменная, которую мы определяем при маневрировании. Чем выше курс судна, чем более горизонтальной становится контактная линия на водопадном экране, тем ближе находится цель. Пример из сухопутной жизни; автомобиль со свистом проносится мимо вас на шоссе, в то время как далекий небоскреб остается, кажется, на одном и том же расстоянии от вас.
Водопадный экран обычно делится на три части:
• Верхняя часть отображает информацию за последний час.
• Средняя часть отображает информацию за последние 10 минут.
• Нижняя часть отображает информацию за последние 2 минуты.
Таким образом, контактное увеличение курса будет отображаться на кратковременном дисплее, тогда как изменение курса судна, находящегося на большом расстоянии, может быть показано на долговременном дисплее.
Морской патрульный самолет, такой как Р-3 «Орион», можно увидеть на кратковременном дисплее, когда тот пролетает над судном. Сонар может даже дать сигнал тревоги, когда подлодка находится под водой, если он засёк звук пропеллеров на близком расстоянии.
Гидрофоны — уши подлодки. В передней сферической части подлодки они напоминают плитки, которыми покрыта сфера; в корпусной части — они напоминают резиновые пластины; в задней же — толстые кабели.
И сказал Бог: «Да будет узкополосный сонар»
Широкополосный сонар был изобретением 1960-х годов. Тихая подлодка класса Sturgeon могла засечь громкую подлодку класса «Виктор» с помощью широкополосного сонара на расстоянии 6000–8000 ярдов (3–4 миль).
С применением современных технологий это смехотворно малое расстояние. В конце 1970-х годов Бог сказал: «Да будет узкополосный сонар», и понял он, что это хорошая вещь. У нас он был. У русских не было, поэтому мы их видели как на ладони.
Использование пассивного широкополосного сонара похоже на то, как если бы вы слушали все радиостанции одновременно. Представьте себе, сколько шума вы бы услышали — музыка, новости, реклама и так далее. То же самое и с морем. Оно полно различных звуков: шум волн, киты перекликаются, шум торговых судов и даже далёкая вулканическая активность — все это вы услышите. Теперь представьте, что вы знаете частоту радиостанции, которую вы хотите послушать. Вы можете просто настроиться на неё, избавившись от постороннего шума. Это как раз то, для чего служит узкополосный сонар. Если вы точно знаете, звук какой частоты производится целью, вы можете пробраться через дебри океанических шумов и услышать нужный объект за много миль. Мы можем услышать тихую подлодку противника на расстоянии 80 000 ярдов или 40 морских миль. Согласитесь, заметный прогресс по сравнению с расстоянием в 6000 ярдов, которое предоставляли нам широкополосные сонары.
Подобно широкополосному сонару, узкополосный сонар тоже «слушает», используя гидрофоны в обшивке корпуса подлодки. Узкополосный шлейф излучателей тянется за судном на кабеле длиной в милю. Гидрофоны выстроены в линию и похожи на очень толстый кабель. Они принимают звуки всех частот из окружающего океана. Но настоящим достижением является наличие компьютера, который носит название узкополосный процессор.
Этот сонар более эффективен благодаря наличию процессора обработки тональных сигналов. На любом судне полно вращающегося оборудования, в том числе винт, насосы морской воды, прочие насосы, турбины и дизельные силовые установки. Это оборудование вращается с фиксированной частотой, которую задает частота переменного тока (на западном оборудовании она составляет 60 Гц, на российском — 50 Гц). Это вращающееся оборудование посылает тональные сигналы в воду.
Единственный способ погасить такие тональные сигналы — закрепить оборудование на сложных звуковых кронштейнах, но это лишь делает сигнал тише. Оборудование все равно продолжает посылать их, а узкополосный процессор принимать сигналы.
Узкополосный процессор «снимает» сигналы с гидрофонов, расположенных позади подлодки, и выделяет лишь узкий диапазон частот, основываясь на частотах, излучаемых разными типами подлодок или других судов. Компьютер затем выводит график, на котором по горизонтали показана частота, а по вертикали — интенсивность сигнала. Информация выводится за 15 минут.
Если в течение 15 минут на экране остается горизонтальная линия, это означает отсутствие цели на данном участке на заданной частоте. Присутствие цели выводится в виде ломаной линии или последовательности на экране. Всплеск активности проявляется только в случае присутствия объекта, сделанного человеком. Вы уставились на экран с ломаными линиями, думая, что вы только что засекли свою первую подлодку противника. Эта мысль заставляет вас забыть о том, что экран не представляет из себя ничего интересного. Это не прошло бы в Голливуде, потому что тамошние режиссеры хотят, чтобы, глядя на похожие на радар экраны, человек знал, где находится цель.
Узкополосный процессор «изымает» из общего потока информации именно тот диапазон частот, который требуется. Диапазон — небольшой отрезок, включающий в себя определенные частоты, например, от 249 Гц до 251 Гц.
Тональный сигнал — просто звук определенной частоты, как звук музыкального инструмента.
Узкополосный парадокс
Это показывает парадокс в работе узкополосного сонара: вам необходимо знать частоту, чтобы обнаружить цель. Это является результатом ограничений, налагаемых бортовыми суперкомпьютерами. Они не могут слушать и анализировать сразу все частоты на всех направлениях. Этого не смог бы и самый мощный компьютер в мире. Вместо этого они слушают на определенной частоте и направлении выбранных операторами сонаров. Только в этом случае они эффективны.
Как, спросите вы, можно узнать нужную нам частоту? Её узнает американская подлодка, которая висит на хвосте новой подлодки противника, когда та отправляется в свое первое плавание. Американская подлодка проводит звуковой анализ, просто плавая кругами вокруг подлодки неприятеля. Позже записи анализируются ядром сонара, а затем анализируются частоты, излучаемые новой подлодкой противника.
Пример
Например, представьте себе, что 14 марта Национальное Агентство Безопасности получает информацию, что русская подлодка класса «Северодвинск» выйдет из дока Севмаш на севере России 1-го апреля или около того. Информация передается в Разведывательное агентство Министерства обороны, потом в Морскую разведку, затем Командующему морскими операциями, а затем командующему подлодками Атлантического флота. Оттуда сообщение передаётся на американскую подлодку «Оклахома Сити», которая осуществляет патрулирование в районе Кольского полуострова, колыбели российских баз подлодок и доков. Через несколько часов «Оклахома Сити» занимает позицию в районе проливов около бухты Севмаш, команда наготове.
1 апреля ничего не происходит, 2 апреля тоже тишина. Может быть, возникла проблема с детектором уровня парового генератора? 3 апреля — есть! Подлодка класса «Северодвинск» замечена через перископ, когда та покидала порт. «Оклахома сити» проследует её по пятам и осуществляет видеозапись внешних параметров подлодки во время того, как российская лодка находилась на поверхности. Также сонар записывает «голос» «Северодвинска», когда американская подлодка описывает круги вокруг нее. Как же получается так, что нас не замечает противник?
Два слова — акустическое превосходство. Американские подлодки тише русских, поэтому мы слышим их, а они нас — нет. «Оклахома Сити» преследует подлодку во время учений, а потом возвращается домой и привозит ценную информацию для дальнейшего анализа. Оказалось, что «Северодвинск» излучает двойной сигнал, на частоте 353,5 МГц и 354,6 МГц.
Эта информация передается на флот. В следующий раз, когда американская подлодка будет находиться в Баренцевом море и разведка укажет, что подлодка класса «Северодвинск» обнаружена в указанном районе, то команда сонара вводит «поисковый план» «Северодвинска» в компьютер, который ищет уникальный двойной сигнал на частоте 354 МГц. Как только процессор узкополосного сонара обнаруживает этот сигнал, они узнают, что подлодка класса «Северодвинск» где-то рядом.
Если вы не располагаете разведданными относительно данной подлодки, то у вас нет шансов обнаружить её с помощью узкополосного сонара. Чтобы найти иголку в стоге сена, вы должны точно знать, как она выглядит.
Низкочастотный анализ и определение расстояния до цели
Это грубый частотный анализ с помощью широкополосного сонара с целью найти сигнал, испускаемый винтом подлодки. У судов, плавающих на поверхности, винты такие шумные, что в этом случае вы можете проделать эту операцию, используя наушники и секундомер. Когда вы не уверены в точности полученной информации, в дело вступает компьютер. В результате вы получаете количество оборотов винта в минуту и количество лопастей винта.
Информация о количестве лопастей винта может быть чрезвычайна полезна, потому что торговые суда имеют 3 лопасти на винте, иногда 4. Пятилопастной винт всегда означает боевой корабль. Когда система определяет винт с 7 лопастями, команда приводится в боевую готовность, торпеды готовы к запуску независимо ни от чего: объект — подлодка.
R в аббревиатуре LOFAR (англ. «low-frequency analysis and ranging») остаётся загадкой, потому что LOFAR не определяет расстояние до цели. Наверное, LOFAR звучит лучше, чем LOFA.
Скалы: подлёдный сонар
Навигацию подо льдом можно, но меньшей мере, назвать щекотливым моментом, а то и коварным. Подводники используют гидрофоны, расположенные на вершине паруса. Они посылают вверх короткие, высокочастотные сигналы. Один сигнал отражается от нижней части ледяного покрова, второй — от верхней. На экране отображаются оба сигнала, разница между ними и есть толщина льда над головой.
Этой информацией необходимо обладать, потому что толстый слой льда представляет опасность для подлодки. Тонкий слой льда, который называется полынья, это то место, где подлодка может подняться на поверхность вертикально вверх через лед. Специалисты высокого уровня могут обнаружить полынью. Это место фиксируется на экстренный случай, чтобы подлодка смогла сюда вернуться.
Такой экстремальной ситуацией может быть:
• пожар, в случае возникновения которого необходимо проветрить помещение, выпустив дым и СО наружу и впустив свежий воздух через мачту шноркели;
• неполадки в работе реактора, когда необходимо запустить дизельную силовую установку;
• экстренная ситуация медицинского характера, когда требуется эвакуация людей с подлодки.
Сонар на носу судна используется для того, чтобы помочь подлодке огибать ледяные рифы и сталактиты, столкновение с которыми даже на скорости 4 узла может стать причиной разрушения паруса или вывести из строя сферу сонаров. Носовой сонар является активным приёмо-передатчиком, который посылает и принимает сигналы одновременно. Это достигается путём посылки сигнала, частота которого постепенно возрастает и убывает, что похоже на полицейскую сирену. Таким образом, прибор определяет временной промежуток с того момента, как он получил обратно сигнал, который ниже по частоте, в то время как он посылает более высокий по частоте сигнал. Прибор также «освещает» 30-градусный сектор впереди подлодки.
Экран прибора напоминает дисплей радара, на котором точками отмечены места, где ледяные глыбы лежат на пути судна. Дежурный по судну управляет подлодкой, используя информацию, предоставленную подледным сонаром, и ведет судно вперёд медленно, маневрируя между ледяными глыбами.
Так как в системе используются высокочастотные сигналы, которые быстро гаснут в толще океанской воды, их трудно засечь с больших расстояний.
К тому же, сама толща льда производит много шума. Вы можете услышать его сквозь корпус подлодки «невооруженным ухом» (довольно жуткий звук). Поэтому подледный сонар представляет смертельную опасность, являясь активной системой.
Система электронного противодействия
Если бы только моряки судов и пилоты авиации ВМС знали, сколько информации подводники получают от радаров судов и самолетов, то прекратили бы их использование раз и навсегда. Каждый радар посылает сигнал на своей частоте, которая «выдает» передатчик — вы можете сказать, что каждый из них обладает собственным голосом.
Даже суда одного класса с одинаковыми передатчиками можно отличить друг от друга, потому что передатчики немного отличаются. Хороший оператор, отвечающий за обработку поступающих сигналов, может отличить два судна одного класса, используя характеристики сигнала радара.
Комната обработки поступающих сигналов расположена обычно рядом с радиокомнатой и центром управления. Антенна, которая принимает информацию, установлена на перископе, так что нет необходимости поднимать ещё одну радиомачту, которая стала бы объектом нежелательного в данной ситуации внимания.
Если требуется более детальный анализ сигнала, оператор, отвечающий за обработку поступающего сигнала, просит дежурного по судну поднять мачту обработки сигналов, толстый телефонный шест, установленный на парусе. Несмотря на свои габариты, ей нужно всего несколько секунд, чтобы получить картину электронной обстановки. Мачта поднимается, «нюхает» воздух и опускается вниз, готовая поделиться богатством полученной информации.
Дежурный по судну может сразу сказать, если перископ обнаружен лучом радара противника, потому что на перископе установлен специальный датчик. Вы можете быть уверены, что сложилась напряженная ситуация, когда вы погрузились на перископную глубину, а датчик кричит, как «сумасшедший». Когда он ведет себя таким образом, то перископ был обнаружен лучом специально разработанного для этой цели высокочастотного радара. В этом случае дежурный по судну обычно опускает перископ, чтобы уменьшить его видимую область. К счастью, перископ снаружи имеет антирадарное покрытие, которое поглощает лучи. Все же, когда вы наблюдаете за учениями китайских ВМС в заливе Бо Хай, приятно осознавать, что «плохие парни» ищут вас, а вы осторожно наблюдаете за ними из-за угла.
ESM — electronic signal measures (англ. «электронная обработка поступающих сигналов»). Большую часть времени техник занимается классификацией и распознаванием поступающих сигналов.
Инфракрасные лучи: поиск теплового излучения
Мачта с инфракрасным детектором иногда используется в качестве отдельной мачты, которая подключена к консоли в центре управления. Мачта фиксирует свет вне видимого спектра лучей в виде теплового излучения. Она различает тёплые и холодные предметы. На консоли имеется ТВ экран, изображение преобразуется с помощью компьютера. Это довольно странная система, потому что она видит сквозь предметы. Если мимо пролетает патрульный самолет, то вы можете видеть сквозь его обшивку: вы видите приборную доску, людей и разные части двигателя. Это очень похоже на рентгеновские лучи.
В случае судна на поверхности система показывает теплый контур корабля на фоне холодного моря. Эта система не очень широко применяется, потому что изображение получается более размытым, чем в объективе перископа, если только объект не находится на близком расстоянии. Пока никому не удавалось «обойти» перископ.
Визуальная система: перископ
Все знают, как выглядит перископ: окуляр с двумя рукоятками — одна слева, другая справа. Ручка управления увеличением изображения — справа, ручка изменения угла обзора — слева. Современные перископы являются также:
• принимающей радиоантенной,
• мачтой обработки поступающих сигналов,
• прибором, который может делать фото — и записывать видеоизображение.
Видеоповтор изображения с перископа транслируется на экраны в центре управления, в каюте капитана и в вахтенной комнате. Он показывает изображение с перископа, если тот поднят в дневное время (если задание не носит секретный характер). Фотографии могут быть драматичными. Капитаны подлодок любят посылать подписанные всеми членами экипажа фотографии с перископа в рамке своим коллегам, капитанам боевых судов, особенно когда подлодки выигрывают учения.
Режим недостаточной освещённости
Одним из малоизвестных свойств перископа является возможность переключения в режим недостаточной освещённости. Он тоже довольно редко используется, потому что может неверно указать расстояние и быть выведенным из строя слишком яркой вспышкой света, которая отображается в объективе перископа как ослепительно белая. Это может нарушить планы дежурного по судну воспользоваться прибором ночного видения. Но когда этот режим применяют, то он похож на прибор ночного видения, используемый в сухопутных войсках.
Очень интересно пользоваться этим режимом, когда перископ только опустился под воду, — вы можете смотреть вниз на корпус подлодки и видеть погрузившееся судно. Немного страшновато!
Лазерный дальномер
Это здорово: когда видна цель в окуляре перископа, можно не утруждать себя высчитыванием расстояния при помощи меток в объективе, а просто выпустите лазерный луч в цель и определить расстояние с точностью до сантиметра. У этого устройства есть и недостатки, как и у активного сонара: он излучает поток энергии, который не может взяться из ниоткуда, поэтому он ставит под угрозу скрытность судна. Он может быть обнаружен современным продвинутым оборудованием. Представьте себе, что вы «сидите на хвосте» судна и думаете, что вы видите его, а он вас нет. Вы пытаетесь определить расстояние до него с помощью лазера, а он неожиданно разворачивается и выпускает в вас целую очередь глубинных зарядов. Внезапно вокруг вашего судна начинают наблюдаться взрывы. Затем в вас выпускают торпеду, потом подводные ракеты. И всё кончено.
Вам лучше было воспользоваться «глазами моряка» для определения расстояния. Опытный офицер может с большой степенью точности определить дистанцию до цели, находящейся на поверхности. Насколько точно? Достаточно, чтобы прицелиться и поразить цель. Это называется «огневое решение».
Безопасный фатометр
Это ещё одна система, использующая активный сонар, но она установлена на киле подлодки, направлена вниз и посылает очень короткие по длительности сигналы высокой частоты и мощности. Их очень трудно обнаружить, но эта система всё равно не используется в тактической ситуации. Пульсации отражаются от дна и возвращаются. Разница во времени между тем моментом, когда был послан сигнал сонаром, и тем моментом, когда он возвратился, используется для расчета расстояния до дна. По традиции глубина под килем измеряется не в футах или метрах, а в фатомах.
Если приборы показывают, что глубина составляет менее 100 фатомов, то либо у вас большие неприятности, так как вы можете в любой момент сесть на мель, либо вы в тактической ситуации вошли в малые воды (глубина менее 100 фатомов, около побережья), пытаясь проникнуть в порт.
Фатом = 180 сантиметрам.
Датчики будущего
Оптические датчики, также называемые фотодатчиками, разрабатываются в настоящее время для подлодок класса «Вирджиния». Эта технология сделай ненужным перископ и позволит разместить центр управления не на верхнем уровне, а где-нибудь в другом месте.
С применением оптической технологии изображение сверху передается внутрь корпуса с помощью оптоволоконных кабелей вместо большой трубы с призмами. Это значит, что только один кабель теперь проникает сквозь корпус подлодки. Остальная часть оптоволоконной мачты будет установлена в парусе.
Сонарные системы будущего строятся на современных технологиях с большим уклоном в сторону компьютерного оборудования сонара. В настоящее время сонарные процессоры делят океан на сегменты и осуществляют поиск нужной частоты. Более мощные компьютеры могут осуществлять поиск частот во всём спектре. Для этого компьютер должен будет обрабатывать в несколько миллиардов раз больше информации в секунду, чем сегодня. Более продвинутые компьютеры позволят осуществлять поиск в широкополосном диапазоне по компасу, а не в каком-то конкретном секторе. В будущем система кормовых сонаров, тянущихся за подлодкой, будет артикулированной, где каждая частичка «знает» положение в пространстве относительно другой частички. Специальные датчики будут проводить пространственно-временной анализ для определения примерного расстояния цели, не требуя маневров от судна.
Внешние датчики обретут свой облик в следующее десятилетие, когда дистанционные сонарные системы будут запускаться судами или сбрасываться судами и вертолетами, или же будут существовать сонарные станции, прикреплённые к океанскому дну. Эта система способна контролировать определённый район и передавать информацию на большие расстояния. Также ведутся разработки в области систем вооружения, так что в скором времени подлодка со специальными датчиками сможет направлять оружие на тысячи миль. В будущем будут разработаны миниподлодки, которые смогут отправляться с борта большой подлодки и нести на борту оружие в отдаленные районы боевых действий, а большая подлодка будет использоваться в качестве командного и контрольного центра. К тому же оружие может быть развёрнуто в районе конфликта специальными средствами, внутри которых оно будет в безопасности и готово к применению, Оружие будет поддерживать связь с подлодкой, находящейся за тысячи километров, на случай необходимости применения. Эти две технологии будущего могут поставить под сомнение необходимость подлодок как таковых — с применением датчиков и средств доставки, действующих на большие расстояния, платформой управления может служить крейсер или эсминец, но учитывая тот факт, что платформа управления должна быть столь же незаметной, как оружие и датчики, можно утверждать, что в ближайшее время надобность в подлодках сохранится, потому что только подлодка обладает достаточной степенью скрытности.
Средства радиосвязи
Когда дело касается средств связи, то подлодки сильно отличаются от других судов. Командир подлодки — один из последних мировых тиранов: он один несет ответственность за судно и не получает постоянных директив из штаба. Это происходит потому, что подлодка большую часть времени не выходит на связь.
Только волны одной частоты могут проникнуть сквозь толщу океанской воды — волны сверхнизкой частоты. Атакующие подлодки могут принимать сигналы сверхнизкой частоты с помощью антенны в парусе. Проблема здесь состоит в том, что передатчики сверхнизкой частоты имеют поистине гигантские размеры, они требуют башни несколько сот метров в высоту и передатчики на берегу океана.
Скорость передачи данных на сверхнизкой частоте настолько мала, что для передачи одной буквы требуется 20 минут. Сверхнизкая частота остается единственной возможностью, которая может «вызвать» подлодку на перископную глубину, где можно воспользоваться уже всем электромагнитным спектром.
На перископной глубине радиоволны принимаются антенной, установленной в перископе. Лучшим принимающим устройством является AN/BRA-34, толстая телефонная балка, которая превосходно принимает волны сверхвысокой, высокой и ультравысокой частоты. Эти частоты имеют разные передающие характеристики. Высокая частота не всегда применима. Сигнал может пройти сквозь атмосферу: вы способны достичь Шанхая, но не услышать Норфолка, находясь недалеко от Чарльзтона. Ультравысокая частота обладает отличными передающими характеристиками, но радиус действия их ограничен видимыми пределами. Если вы видите объект, то можете посылать сигнал и принимать информацию, но она не работает, если вы хотите связаться с кем-то за линией горизонта. Но с помощью передающего спутника на орбите вы можете передавать информацию так, что противник её не перехватит. Такой способ передачи становится преимуществом. Плюс ко всему, сообщение доходит в очень короткие промежутки времени, вы можете получить информацию в течение нескольких секунд. Это сводит к минимуму время использования передатчика BRA-34, а соответственно, вы снижаете шансы вас засечь. К тому же время передачи информации на спутник очень коротко.
Если существует такая возможность, подводники стараются вообще не выходить на связь. Тишина в радиоэфире — один из основных факторов в деле сохранения скрытности, ведь лейтмотив подводного флота: «Оставаться незамеченным». Капитаны подлодок обожают такое положение вещей потому что они не получают постоянных приказов, требующих от них точного выполнения всех директив из штаба. Они командуют не только подлодкой, но и тактической ситуацией в целом. Капитаны подлодок сначала делают что-то, а потом докладывают об этом начальству. Ни один другой военный не может позволить себе подобных вольностей.
Может быть, жаль, что в настоящее время Пентагон разрабатывает средства связи с подлодкой в реальном времени, используя плавучие и сверхвысокочастотные антенны.
Сейчас можно осуществлять радиообмен, поднимаясь на перископную глубину каждые 8–10 часов через разные промежутки времени. На перископной глубине каждый выполняет свою работу: раз в неделю-две инженер хочет избавиться от вредных химикатов в паровых генераторах, каждый день офицер снабжения хочет выбросить мусор, навигатор — получить тактическую картину на поверхности, а радио-офицер — получить радиосообщения. На перископной глубине задача дежурного по судну — поднять антенну BRA-34 из воды за одну минуту до того, как спутник начнет передачу информации, что происходит 4 раза в час через определенные промежутки времени. Если он сделал это, то он знает, что спустя минуту спутник передаст сообщение, которое заносится в память компьютера. Затем специалисты по радиооборудованию опускают принимающую антенну, а дежурный офицер снова дает приказ на погружение.
Подлодки, несущие на борту баллистические ракеты, постоянно на связи, используя плавучие антенны, потому что в любой момент они могут получить приказ из Белого дома или Пентагона о запуске баллистических ракет, а исполнить приказ они должны немедленно. Если береговые передатчики подверглись нападению с применением ядерного оружия, то специальный самолет вылетает, чтобы передать сигнал подлодкам о запуске баллистических ракет.
В тактической ситуации при необходимости передачи информации командир подлодки использует подлодочный передатчик. Он имеет размеры бейсбольной биты. Компьютер дает сигнал передатчику на отправку закодированного сообщения на спутник. Передатчик располагается в одном из сигнальных маяков, представляющих собой нечто вроде торпедной пусковой установки, которая затапливается морской водой, чтобы вытолкнуть передатчик из корпуса подлодки. Передатчик поднимается на поверхность, ждет установленный временной промежуток (часа обычно бывает достаточно) и передает сообщение. Потом он снова затапливается и уходит под воду.
На стойке перископа находится красная коробка с красным телефоном на ней. Это спутниковая голосовая система безопасности «Нестор», которая использует сверхвысокие частоты, чтобы передать голосовое сообщение через кодирующее устройство. Передача через кодировщик занимает в среднем 1–2 секунды. Голос искажается, но устройство позволяет капитану подлодки переговариваться с противолодочным воздушным аппаратом Р-3 Orion о местоположении преследуемой подлодки. Одна подлодка может «передать» преследование подлодки противника другой подлодке, используя Р-3 и систему «Нестор».
Несколько слов о радиобезопасности: когда подлодка заходит в порт или покидает его, радиообмен происходит на международной сверхвысокой частоте. Ни при каких обстоятельствах подлодка не выдаёт своего типа или имени (это было бы непростительной ошибкой, потому что судно-шпион противника могло бы сопоставить номер борта и характеристики сигнала радара). Когда американская подлодка называет себя на небезопасной сверхвысокой частоте, она просто именует себя как «подлодка ВМС США».
Минимум того, что вам нужно знать:
• В 1960-е годы эффект использования широкополосного сонара был сродни поискам иголки в стоге сена.
• Современные технологии позволяют нам отсечь все посторонние шумы и слышать лишь то, что нам необходимо.
• Современные перископы позволяют выполнять гораздо больше функций, чем просто возможность дежурного по судну видеть то, что происходит на поверхности.
• Подлодки могут получать радиосигналы сверхнизкой частоты, потому что лишь они способны пробиться сквозь толщу океанской воды. Сигнал сверхнизкой частоты выполняет роль сигнала на пейджер, который говорит подлодке подняться на перископную глубину для получения сообщений со спутника сверхвысокой частоты.