Глава 2 Ракетные приоритеты М.М. Поморцева

We use cookies. Read the Privacy and Cookie Policy

Известный русский ученыйуниверсал, основатель аэрологии, штатный военный преподаватель Михайловской артиллерийской академии генералмайор М.М. Поморцев (1851–1916) в конце XIX — начале XX века по программе Главного артиллерийского управления проводил громадную научно-экспериментальную работу по совершенствованию ракет[54].

Исследования, проводимые генералом Поморцевым в области проектирования, изготовления и испытания пороховых ракет, можно назвать пионерскими и, пожалуй, самыми глубокими в мире в начале ХХ века. Михаил Михайлович Поморцев занимался усовершенствованием конструкции боевых и осветительных ракет и повышением устойчивости их полета, применял новые стабилизирующие поверхности — крылья разных планов и конфигураций.

Эта работа М.М. Поморцева мало известна широкому читателю. Между тем генералом Поморцевым открыт ряд приоритетов в «ракетоплавании», как тогда говорили, включая и пионерские работы по крылатым ракетам.

В докладной записке в Главное артиллерийское управление в 1902 г. в то время еще полковник Поморцев писал: «Занимаясь долгое время разработкой летательных аппаратов, мною выработана система поверхностей, обладающих значительной подъемной силой и большой устойчивостью при движении в воздухе. Приспособление таких поверхностей к ракетам могло бы придать последним значительную меткость при переносе взрывчатых веществ и светящихся составов на большие расстояния, образуя род воздушных торпед»[55].

Члены Артиллерийского комитета генералмайор Забудский и полковник Тимковский дали высокую оценку предложению Поморцева.

В начале повествования о ракетных приоритетах М.М. Поморцева вкратце приведем содержание пусть и не совсем авторитетной с научной точки зрения, но весьма оригинальной по изложению статьи, помещенной в подмосковной газете «Народное знамя» в 1998 г. В рубрике «Годы, имена, дела» обращает на себя внимание небольшая заметка о создателе и руководителе Аэродинамического института в Кучино Д.П. Рябушинском. В частности, в заметке говорилось: «Если бы не Дмитрий Павлович Рябушинский, возможно, не родились бы так, кстати, знаменитые "Катюши"». В 1914 г. в институте проводятся опыты по запуску моделей боевых ракет — прообраза будущих «Катюш».

В 1920 г. в Париже, будучи эмигрантом, сам Дмитрий Павлович Рябушинский писал: «Поморцев не смог закончить своих опытов; он скончался в июне 1916 г. от болезни сердца, которой давно страдал… По желанию Поморцева я продолжал его изыскания после его смерти. Настоящая работа и является результатом моих трудов» (6-й выпуск трудов Кучинского института, изданный в Париже в 1920 г. на французском языке. — Авт.)[56].

Во многих работах по истории ракетной техники сказано, что создание реактивных снарядов в нашей стране началось в 1921 г. разработкой твердотопливных ракетных двигателей Н.И. Тихомировым, В.А. Артемьевым, Г.Э. Лангемаком, Б.С. Петропавловским и др. Интересно, что вышеуказанные ученые занимались разработкой твердотопливных ракет именно в том городе и том самом научном учреждении, где работал над твердотопливными ракетами и М.М. Поморцев, — в Ленинграде в Артиллерийской академии РККА. Это уже потом работы по разработке и испытаниям твердотопливных ракет были перенесены в Газодинамическую лабораторию и Ракетный НИИ.

Таким образом, можно предположить, что работа М.М. Поморцева в области ракет послужила первым шагом создания ракет, которые в годы Второй мировой войны и впоследствии нашли массовое применение в реактивных системах залпового огня. Условно назовем это «первым ракетным приоритетом» Поморцева.

Необходимо сказать, что период развития твердотопливных ракет в России с 1910 по 1920 г. требует более детального исследования. Во многих работах этот период вообще не упоминается[57]. Так, В.Газенко считает: «…Открытия и изобретения русских артиллеристов XIX века легли в основу разработки советскими учеными реактивной артиллерии». Таким образом, получается, что в первые 20 лет ХХ века никаких работ по твердотопливным ракетам и не проводилось?! Пора сказать, что именно ракетные исследования М.М. Поморцева, а затем Д.П. Рябушинского и стали той основой, на базе которой советские ракетостроители начали работы по твердотопливным ракетам.

В начале своих исследований в области ракетостроения М.М. Поморцев предложил создать своеобразный «ракетоплан». Известный историк ракетостроения В.Н. Сокольский считал, что это был ракетный планер (ракетопланер). Четкого разграничения между ракетопланами и ракетопланерами в специальной литературе не существует. Однако, следуя пояснениям Военного энциклопедического словаря (М., Воениздат, 1986) можно утверждать, что ракетоплан — это планирующий летательный аппарат, разгоняемый бортовым ракетным двигателем, отделяемым после разгона, а ракетопланер — летательный аппарат с ракетным двигателем.

Ракетопланеры Поморцева вряд ли можно назвать таковыми, так как он хотел использовать подъемную силу крыльев не для полета, а для поддержания в воздухе осветительного состава возможно более длительное время, для повышения дальности полета боевой части ракеты и вместо хвоста — с целью повышения устойчивости ракеты.

В это же время Поморцев, будучи одним из пионеров русской авиации, также проводил опыты по повышению устойчивости полета воздушного змея и планера. Устойчивый воздушный змей и планер ему нужны были не просто для парящего полета, а для подъема метеорологической аппаратуры (М.М. Поморцев является также основателем аэрологии). Так вот, на одном из этапов исследований Поморцев объединил научные работы по планерам и ракетам. А это привело к рождению чуть ли не первых в мире крылатых ракет.

А начиналось все так. В 1898 г. Поморцев разработал планер-змей, который газетчики в то время называли «прототипом для создания аэроплана». Планер Поморцева состоял из двух криволинейных треугольных в плане крыльев, пересекавшихся почти под прямым углом друг к другу (прототип монопланного аэроплана). Интересной особенностью было то, что все четыре части крыльев имели почти одинаковую площадь.

Такое устройство крыльев давало планерузмею, по мнению ученого, большую устойчивость в поперечном направлении, так как боковое обтекание (Поморцев писал: «неправильные боковые удары ветра») уравновешивалось расположением крыльев. Полезный груз подвешивался снизу на особо устроенной гибкой подвеске. Причем крепление было продумано так, что при любых условиях движения планера в воздухе он сохранял свою устойчивость. То есть по сути этот планер был аппаратом балансирного типа и, видимо, груз автоматически восстанавливал устойчивость за счет гибкости подвески.

Поморцев построил несколько планеров различных размеров. Сравнительный анализ их характеристик с характеристиками планеров других конструкторов того времени показывает, что в конструкции этих летательных аппаратов М.М. Поморцев достиг немалого прогресса. Есть основания предполагать, что братья Райт были хорошо знакомы с работами Поморцева в области планеров и воздушных змеев. Существуют предположения, что именно благодаря исследованиям Поморцева они внесли изменения в свой планер, который, впоследствии и стал прототипом их первого самолета[58].

Прямых подтверждений этому факту авторами не обнаружено, да и планер Поморцева по внешнему виду существенно отличается от планера братьев Райт. Тем не менее какие-то научные связи между Поморцевым и братьями Райт вполне вероятны, может быть, через О. Шанюта. Достоверно известно, что пионер американской авиации Октав Шанют обменивался с Михаилом Поморцевым результатами аэродинамических исследований. Пожалуй, единственное туманное упоминание о творческих связях Поморцева с братьями Райт можно найти только в протоколе заседания Воздухоплавательного отдела Императорского Русского технического общества (ИРТО), состоявшегося 10 (23) января 1904 г. под председательством Е.С. Федорова.

В прениях по докладу В.В. Кресса «Динамическое воздухоплавание» Поморцев сказал: «…достаточно познакомиться с трудами таких деятелей по воздухоплаванию, как Ренар и Шанют, чтобы убедиться, что и теория совершенно подтверждает то же, что он 20 лет доказывал также путем опытов. Позднейшие факты вполне подтверждают все сказанное: так, по частным сведениям (выделено авторами), которые я недавно получил из Америки, оказывается, что сотрудник Шанюта, Райт на своем управляемом аэроплане пролетел несколько километров с довольно большой скоростью»[59].

Планеры Поморцева были испытаны в Кронштадте в 1901 г. Командир крепостной артиллерии генералмайор Н.А. Чижиков предоставил в распоряжение полковника Поморцева помещение и необходимое число помощников. Содействие ученому оказывали и другие офицеры крепостной артиллерии. Помощником М.М. Поморцева был В.М. Катышев — член Воздухоплавательного отдела ИРТО.

В Кронштадте в воздух поднимались большие парусиновые планеры-змеи с хвостом. Они запускались как в одиночку, так и соединенные вместе по три и более штук. По мнению Поморцева, змеи его конструкции являлись более совершенными, чем однотипные по назначению змеи Харгрева. Докладывая 28 ноября 1901 г. о результатах своих исследований членам Воздухоплавательного отдела, М.М. Поморцев в павильоне ИРТО продемонстрировал полет одного из своих змеев (в этом павильоне была проведена целая серия исследовательских запусков змея Поморцева). Змей запускался с помощью резинового амортизатора.

Вот как описал исследования Поморцева в области воздушных змеев журнал «Метеорологический вестник» № 12 за 1901 г.: «После ряда исследований метательной способности и подъемной силы разных поверхностей им (Поморцевым. — Авт.) была принята форма двух крылатых поверхностей, перпендикулярных одна другой, расположенных крестообразно и симметрично относительно продольной балки. Центр тяжести и центр давления такого планера находятся почти в совмещении на линии продольной балки. Планеры обладают большой прочностью, значительною устойчивостью в воздухе и при 10 кв. метрах рабочей поверхности весят 25–30 фунтов, поднимаясь при сравнительно слабом ветре (2–2,5 метра в секунду)…».

Члены Воздухоплавательного отдела ИРТО высоко оценили работу Поморцева. Они поставили его в один ряд с такими пионерами авиации, как Лилиенталь, Пильчер, Шанют, братья Райт. Еще более высокую оценку исследованиям М.М. Поморцева дал другой пионер русской авиации В.М. Катышев: «…Рассматривая планер М.М. Поморцева как летательную машину, можно прийти к заключению, что благодаря его устойчивости и сравнительно малому сопротивлению влиянию ветра он подает надежду на осуществление его в виде летательной машины»[60]. Катышев закончил свою статью словами: «…Вопрос о возможности механического летания, мне кажется, с изобретением планера М.М. Поморцева решен…».

Летом 1905 г. на воздухоплавательном крейсере «Русь» в Финском заливе, в дни, когда «почемулибо нельзя было заниматься аэростатами, баллон не был наполнен водородом и погода позволяла», проводились опыты с «аппаратами тяжелее воздуха» — воздушными змеями конструкции Харгрева — Шрейдера и Поморцева…»[61].

Мы уделили столько внимания планерам Поморцева по той причине, что крылья «ракетопланера» были сделаны по типу его рассмотренного выше планера. Двигателем служила 3-дюймовая ракета Николаевского ракетного завода, стоявшая на вооружении русской армии. Этот же планер просматривается и в конструкциях осветительных ракетных планеров Поморцева, над которыми он начал работать в 1902 г. Всего М.М. Поморцев разработал около 20 типов ракетных планеров (читай — крылатых ракет).

Первые опыты по своим крылатым ракетам полковник Поморцев провел в Кронштадте и в Петербургской пороховой лаборатории.

В первых вариантах своих «ракетопланеров» Поморцев прикреплял к сигнальным ракетам различной формы несущие поверхности, представляющие собой стальные каркасы, обшитые алюминиевыми листами или прочной материей. Крылья предварительно испытывались в воздухе без ракет с помощью пропеллеров. Затем крылья либо крепились непосредственно к ракете, либо приматывались тонкой стальной проволокой к трубчатой оси. Сама ракета подвешивалась уже к этой оси (стержню). По предварительным расчетам, проведенным М.М. Поморцевым в 1902 г., дальность полета такого ракетопланера с площадью несущих поверхностей до 1 м² при применении стандартной 3-дюймовой ракеты могла достигать трех верст.

Напоминаем, что целью исследований Поморцева не было использование движущей силы ракеты для приведения в движение летательного аппарата тяжелее воздуха, он стремился добиться улучшения таких качеств ракеты, которые позволили бы при помощи предложенных им новых несущих поверхностей повысить точность стрельбы или увеличить дальность и время полета осветительных ракет, а также дальность и время переноса взрывчатых веществ. В этом и заключалась новизна его исследований.

Для запуска таких ракет Поморцев построил небольшой пусковой станок, в котором ракета помещалась между четырьмя тонкими направляющими трубками. Проведенные опыты показали, что добиться «правильности полета ракеты» со стабилизирующими поверхностями, направление которых совпадает с осью ракеты, невозможно, так как малейший угол, составленный этой плоскостью и осью ракеты, давал уже пару вращения и полет становился нестабильным.

Первая серия экспериментов Поморцева носила аэродинамический характер. В 1903 г. ученый писал: «Цель опытов с ракетами заключалась в изучении движения разных типов поверхностей, приводимых в движение в воздухе со значительными скоростями, и в проверке тех выводов, которые были сделаны мною и другими исследователями при движении с относительно малыми скоростями с тем, чтобы полученными данными воспользоваться для более правильного полета самих ракет»[62].

М.М. Поморцев, образно говоря, «учил» ракеты летать экономно, устойчиво, долго и далеко. В одном из своих отчетов он писал: «Одновременно с опытами над планерами мною производились опыты с 3дюймовыми ракетами, которыми отчасти я хотел воспользоваться как двигательной силой, приспособляя к ним разные поверхности». Но артиллерийское начальство ученого было недовольно таким подходом. Руководство Главного артиллерийского управления считало, что Поморцев, как известный деятель воздухоплавания, за «артиллерийские» деньги развивает авиацию (за авиацию и воздухоплавание в Российской империи отвечало Главное инженерное управление). Поэтому чиновники из Главного артиллерийского управления тормозили отпуск средств на опыты Поморцева и ограничивали программу испытаний планеров.

Поморцев сначала исследовал крылья без ракет, в воздухе — при помощи «резиновых пропеллеров», которые крепились к ракетам — либо непосредственно к корпусу, либо к стержню. Эти опыты дали отрицательные результаты: как только ракете «сообщался огонь», ракетный планер, двигаясь вперед, терял устойчивость и начинал вращаться вокруг продольной или поперечной оси. Эти крылья ряд историков ракетной техники называет «стабилизаторами»[63].

Эксперименты первой серии дали возможность сделать следующий вывод: «Достигнуть правильности полета ракет через приспособление к ним поверхностей, направление которых совпадает с осью ракеты, не представляется возможным, так как малейший угол, составленный этой плоскостью и упомянутой осью, дает уже пару вращения и полет становится неправильным»[64].

Вторая серия экспериментов была проведена с трубчатыми цилиндрическими и слегка коническими стабилизирующими поверхностями. Изготавливались стабилизаторы из алюминиевых или тонких стальных лент и крепились к задней части корпуса ракеты. Полет таких ракет был довольно устойчивым, но дальность заметно уменьшалась. М.М. Поморцев объяснял это уменьшением скорости истечения газов, так как наблюдалось сильное трение газов о кольцевые стабилизаторы.

Тогда Поморцев увеличил диаметр кольцевого стабилизатора, который прикрепил соосно к хвостовой части корпуса ракеты. Результаты превзошли все ожидания: ракеты почти не отклонялись от заданного направления даже при сравнительно сильном ветре. Кроме того, опыты, проведенные Поморцевым, показали, что длина кольцевых стабилизаторов не играла существенной роли, а на устойчивость ракет оказывал большое влияние их диаметр.

«Объяснение этому последнему факту, — писал Поморцев, — нужно искать в том, что при быстром движении колец сопротивление воздуха действует, главным образом, на часть кольца, ближайшую к его переднему ребру и, следовательно, за известными пределами задняя поверхность кольца уже не участвует в состав ляющей сопротивления воздуха, увеличивая только трение частиц воздуха.

При некотором уклонении оси ракеты в сторону от направления движения кольцевая поверхность, становясь также под некоторым углом к движению, даст сейчас же пару сил, восстанавливающих нарушенное равновесие, причем устойчивость ракеты становится тем больше, чем больше момент образующихся при этом сил относительно гильзы, то есть чем больше диаметр кольца»[65].

Таким образом, второй этап исследований был посвящен динамике полета ракет. Поморцев установил, что на устойчивость полета существенное влияние оказывает взаимное расположение центра давления и центра тяжести. Он сделал важный вывод: «движение современных ракет совершается в условиях весьма близких к движению снаряда, брошенного из орудия…»[66].

Кроме того, Поморцев пришел к мысли о необходимости изменения формы головной части осветительной ракеты, так как диаметр головной части превышал диаметр корпуса ракеты. Это приводило к большому сопротивлению воздуха при полете ракеты.

Если ракеты русской армии в начале ХХ века летали на дальность до одного километра, то благодаря усовершенствованиям их конструкции, которые предложил М.М. Поморцев, в 1905 г. боевые и осветительные ракеты уже достигали дальности два-три километра. При этом они летали по правильной траектории, напоминающей траекторию шаровых снарядов, выпущенных из мортир[67].

Полет ракет с кольцевыми стабилизаторами, укрепленными концентрично на хвостовой части корпуса ракеты, даже при значительном ветре получался ровным и устойчивым. Официальные испытания таких ракет, заключавшие вторую серию экспериментов М.М. Поморцева, дали сравнительно высокие результаты: дальность полета осветительных ракет увеличилась с 1000 м до 4200 м, дальность полета боевых ракет с 4250 м до 7000 м[68].

Целью третьего этапа экспериментов было установление целесообразных размеров всех частей осветительных ракет с кольцевыми стабилизаторами. Пуск ракет осуществлялся из специального станка, к передней части коробки которого прочно крепились четыре Т-образные металлические планки.

По результатам своих исследований Поморцев предложил заменить ракетные хвосты особой «крылаткой», состоящей из трех или четырех полуколец стальных лент. Это хвостовое оперение выглядело следующим образом: на заднюю часть ракеты вплотную надевалась стальная втулка, к которой приклепывались три или четыре полукольца, изготовленные из стальных лент толщиной 1 мм, шириной 50 мм. Соприкасающиеся концы лент полуколец попарно склепывались между собой, образуя крестовину.

Применявшиеся ранее в боевых и осветительных ракетах длинные деревянные хвостовые стабилизаторы излишне перемещали назад центр тяжести ракеты. В то же время, вследствие малого момента, такое хвостовое оперение мало влияло на устойчивость полета ракеты. Происходившие при полете колебательные движения ракеты поглощали часть энергии движителя и увеличивали «неправильность полета» (уменьшали кучность).

Что касается «крылатки», то, разрезая воздух в направлении своих плоскостей, она давала малое сопротивление и служила хорошим стабилизатором ракете. Корпуса ракет и «крылатки» к месту испытания перевозились по отдельности. Сборка ракеты производилась непосредственно перед пуском.

Другой тип стабилизатора, который М.М. Поморцев предложил по результатам своих экспериментов для улучшения устойчивости полета ракет, имел вид кольца, которое крепилось к корпусу на особых «распорках». Изготавливались кольцевые стабилизаторы из тонких, но широких стальных или алюминиевых лент. «Распорки» (крестовина) делались из стальной проволоки. В первых опытах кольцевые стабилизаторы, бывало, срывались в полете. Но после некоторого усовершенствования они стали более прочными и обеспечивали ракетам перемещение в воздухе в нужном направлении без всякого отклонения в сторону даже при сильном боковом ветре.

Для запуска ракет с «крылаткой» Поморцев сконструировал специальный станок, верхняя часть которого состояла из четырех направляющих планок, выполненных из листового железа и скрепленных оковкой. Станок крепился на треноге и мог устанавливаться под любым углом к горизонту. Масса его составляла всего 16 кг.

Направляющие планки пускового станка располагались попарно в двух взаимно перпендикулярных плоскостях так, что их внутренние ребра были взаимно параллельны. Задние концы направляющих скреплялись железным кольцом и распорными планками. Передние планки были свободны. Между ними с небольшим зазором вставлялся корпус ракеты. Из ракеты газы выходили свободно и не искажали ее полет, как это было в прежних пусковых станках, в которых ракета устанавливалась в четырехгранную коробку. Большим плюсом пускового станка конструкции Поморцева была его портативность, что позволяло легко перемещать его на поле боя (полигоне). Недостатком этого станка была малая длина направляющих, что сказывалось на точности полета ракеты.

Опыты М.М. Поморцева над пороховыми ракетами дали ряд положительных результатов. В докладной записке, представленной в апреле 1905 г. в Артиллерийский комитет, Поморцев писал: «…Первоначально поставленная мною цель при этих опытах, заключавшаяся в достижении значительной дальности, скорости и правильности полета ракет, предполагая их затем применить к бросанию разрывных снарядов, может считаться достигнутой. Ракетные гильзы с приданными им приспособлениями при спуске достигают дальности в 2–3 версты, описывая правильные траектории, напоминающие собою траектории шаровых снарядов, выброшенных из мортир»[69].

В дальнейших опытах М.М. Поморцев достиг еще более высоких результатов. В декабре 1905 г. он докладывал, что стандартные трехдюймовые ракеты, в которых коробки с осветительным составом были заменены тяжелыми конусами, а деревянные хвосты — стальными направляющими, могли достигать дальности «до 3–4 верст при весьма правильном их движении». В этой же докладной он предлагал уменьшить диаметр коробки со светящимся составом (ее длина при этом несколько увеличится при постоянной массе) и увеличить давление газов при сгорании порохового заряда.

М.М. Поморцев рекомендовал использовать для корпусов ракет тянутые из мягкой стали гильзы весом 2 кг. Эти гильзы были почти в три раза легче клепаных гильз из листового железа, изготавливаемых на Николаевском ракетном заводе. По расчетам Поморцева, новые гильзы выдерживали бы давление 200–300 атмосфер, то есть стали бы значительно прочнее, чем прежние гильзы. Все это также, по его мнению, привело бы к повышению дальности и устойчивости полета ракет. Кроме этого, за счет исключения некоторых механических операций (например, клепки) стоимость таких гильз была бы заметно меньше.

Оценивая работу Поморцева, Артиллерийский комитет в 1906 г. отметил в своих отчетах, что «дальность полета "светящих ракет" конструкции Поморцева с кольцевыми стабилизаторами составляет 3–4 версты при вполне правильном полете».

Здесь уместно еще раз напомнить, что Артиллерийский комитет считал, что свои опыты Поморцев ставит для авиации. Это были 1902–1906 годы, когда мало кто предполагал великое будущее авиации. Подобные неоднократные упреки крайне раздражали М.М. Поморцева. В письме к лейтенанту Н.В. Кроткову, который в 1906 г. изыскивал возможность испытаний своих противолодочных (!) ракет, Поморцев писал: «…По вопросу о ракетах с моим начальством вышел конфликт, показывающий, что ни Цусима, ни Мукден наши канцелярии исправить не могут, и очень может быть, что если последние не одумаются, то я откажусь от дальнейших опытов. Такая уж несчастная наша матушка Русь…»[70].

И все же Артиллерийский комитет принял решение продолжить опыты с осветительными ракетами по программе, предложенной Поморцевым. Указывалось, что имевшиеся ранее «светящие ракеты» с деревянным хвостом имели дальность полета лишь один километр и больше служили «для освещения самого стреляющего, чем цели».

Таким образом, Артком принял решение о переработке конструкции ракет, стоящих на вооружении русской армии, по способу, предложенному М.М. Поморцевым. Особо оговаривалось задание Поморцеву о разработке конструкции боевых, зажигательных и бризантных ракет. Николаевскому ракетному заводу было рекомендовано делать головки осветительных ракет одного диаметра с корпусом ракеты. Что касается картечных ракет, то специалисты Артиллерийского комитета высказались против экспериментов с ними, так как «скорость ракеты в момент разрыва оболочки, заключающей пули, будет недостаточна, чтобы сообщить пулям скорость, необходимую для надлежащего картечного действия их»[71].

На заводе «Societe metallurgique de Montbard» в Париже было заказано 500 гильз для определения минимального отверстия истечения, при котором не происходил бы разрыв гильз. Всего из Франции было получено 220 гильз и к ним 102 тонкостенных стальных снаряда. Размеры гильз были подобраны под набивку соответствующими веществами производства Николаевского ракетного завода. Гильзы были двух видов: с отверстием для истечения газов спереди и сзади. В первый вид гильз после набивки взрывчатым веществом ввинчивалось дно. На стенках гильзы симметрично располагались отверстия для истечения газов.

Николаевскому ракетному заводу Артиллерийским комитетом было поручено совместно с Поморцевым выработать новую укладку светящихся шашек с тем, чтобы диаметр коробки не превышал 4 дюйма. Исследовались форма и размер сопел («выходных отверстий»). Для этой цели по просьбе Поморцева на фирме Ришара в Париже был построен чувствительный манометр, оценивающий давление до 200 кг в течение 1/40 секунды.

Опыты начались лишь во второй половине 1907 г. Программа экспериментов была обширной. Она перекликалась с программой аналогичных исследований по ракетам, проводимых генералом К.И. Константиновым в 1850-е гг. В проведении новых ракетных экспериментов приняли участие генерал-майор Поморцев, уже вышедший в отставку, начальник пороховой мастерской Николаевского ракетного завода подполковник Карабчевский, механик этого же завода инженер Деменков и представитель Артиллерийского комитета капитан Эннатский.

Первая серия новых опытов заключалась в определении давления газов в гильзе с целью выяснения зависимости этого давления от величины площади отверстий истечения, размеров «ракетной пустоты», способа набивки топливного состава в гильзу и т. п. Во время опытов ракеты помещались в чугунные тронки, длина которых была примерно равна длине ракеты. В центре тронки просверливалось отверстие, куда вставлялся приемник динамометра Ришара. Испытываемая ракета укладывалась на особо приспособленные внутри тронки вилки таким образом, чтобы ось ракеты проходила через середину поршня приемника. Когда ракета своим передним концом соприкасалась с поршнем, задний конец с отверстиями для истечения газов выходил за наружный срез тронки, и газы могли свободно истекать в воздух. Тронка помещалась на дне вырытой в земле ямы, а пишущий механизм динамометра, соединенный с приемным поршнем при помощи медной трубки, — внутри расположенного рядом здания. Такое устройство позволяло безопасно производить все испытания внутри ракетного завода.

Уже первые опыты показали, что доставленные из Франции гильзы недостаточно прочны: они не выдерживали давления газов, на конической части цельнотянутых гильз появлялись трещины и прогары металла. Испытатели решили обрезать нижние части гильз и заменить их специальными точеными втулками соответствующей формы. Втулки были изготовлены в мастерских Николаевского ракетного завода. Их крепление производилось обжатием гильзы по поддону и закаткой краев гильзы на кромку поддона.

Испытывались гильзы с одним центральным отверстием и шестью отверстиями для выхода газов. В результате опытов первой серии (измерение давления) оказалось, что при горении глухого состава нарастание и падение давления в ракетах происходило весьма быстро. Поморцев предполагал, что давление не превзойдет по верхнему пределу 200 кг, но давление в ракетах с одним центральным отверстием доходило до 300 кг и более. Отдельные гильзы от такого давления разрывались.

Результаты опытов позволили М.М. Поморцеву установить ряд закономерностей, общих для всех ракет рассматриваемого типа: существенное изменение площади отверстий истечения газов не очень сильно влияет на величину максимального давления во время горения топлива. Значительное влияние на давление оказывали диаметр и длина «ракетной пустоты». Поморцев сделал вывод, что для исследуемых трехдюймовых ракет опасно делать отверстие для истечения слишком малых размеров, так как при такой площади давление в гильзе повышалось до значения, при котором происходило разрушение корпуса.

Вторая серия испытаний была посвящена запускам ракет с кольцевыми и крестообразными направляющими, предложенными Поморцевым. Для запуска таких ракет Поморцев сконструировал специальные станки. Два станка были построены в Петербурге, один — на заводе в Николаеве.

Опыты по запуску ракет производились в сентябре-октябре 1907 г. в Николаеве и Очакове. Испытывались ракеты с коническими стальными снарядами и «светящиеся ракеты с удлиненными колпаками». В той и другой партии были ракеты с кольцевым и крестообразным хвостовым оперением и деревянной направляющей. Опыты показали, что дальность полета ракет, снабженных кольцевыми и крестообразными направляющими, значительно превышала дальность полета ракет с деревянным хвостом. Причем наибольшей дальности достигали ракеты, у которых в предыдущей серии опытов было зафиксировано наибольшее давление газов. Более точными оказались ракеты с кольцеобразными направляющими, а не с крестообразными.

Всего было совершено 27 пусков боевых ракет. Максимальная дальность полета ракет с кольцевым хвостовым оперением составила более 6 верст, минимальная — 3. Максимальная дальность полета ракет с крестообразным хвостовым оперением составила более 7 верст, минимальная — до 3. Ракеты с деревянным хвостом летели на 2–3 версты.

Пусков осветительных ракет было совершено всего 25, из них с кольцевым хвостовым оперением — 5, с крестообразным оперением — 18, с деревянным хвостом — 2. Максимальная дальность полета ракеты с кольцевым хвостовым оперением составила до 3 верст, минимальная — до 2. Максимальная дальность полета ракеты с крестообразным хвостовым оперением составила более 2–3 верст, минимальная — до 2. Ракеты с деревянным хвостом летели на дальность до 2 верст.

Однако кучность ракет была небольшой. Опыты показали, что этот недостаток можно устранить за счет усовершенствования как самой ракеты, так и пускового станка. Поморцев дал на сей счет свои рекомендации, и механик Николаевского ракетного завода Деменков занялся конструированием нового пускового станка.

На этом опыты пришлось остановить, так как Николаевский ракетный завод не имел отапливаемых помещений и в зимнее время там невозможно было работать. Однако Карабчевский и Деменков решили не терять времени и испробовать предложения Поморцева на сигнальных ракетах, запас которых на заводе всегда превосходил предложение.

Подводя итоги исследований по ракетам конструкции Поморцева в 1907 г., можно отметить, что этими опытами было положено начало тщательного лабораторного (стендового) исследования ракет. Опыты состояли в изучении процессов горения твердого топлива ракет и в определении наивыгоднейших пропорций составных частей топлива, ракетной пустоты, отверстий истечения и т. п.

Главное артиллерийское управление высоко оценило работу Поморцева по усовершенствованию ракет, стоявших на вооружении русской армии. В журнале Артиллерийского комитета от 28 июня 1908 г. за № 637 отмечено, что «опыты Поморцева положили начало научнотехническому исследованию ракет». Добавим для русского приоритета — крылатых ракет.

В январе 1908 г. на полигоне ракетного завода были проведены сравнительные испытания сигнальных ракет с различного рода стабилизирующими поверхностями: с обычным деревянным хвостом длиной 5 футов; с двумя укороченными хвостами длиной 1 фут 8 дюймов; с кольцевым и крестообразным оперением и другими направляющими. Интересно, что в этих опытах ракеты запускались вертикально вверх, так как основным показателем эффективности стабилизатора служила высота подъема. Высота подъема ракет определялась на глаз, так как на заводе не было приборов для ее определения.

Испытания показали, что принятые на вооружение сигнальные ракеты (с одним деревянным хвостом) и ракеты других конструкторов уступают ракетам Поморцева как по высоте, так и по точности полета в 2,5–3 раза. Кроме того, ракеты Поморцева были весьма устойчивыми в полете. Через месяц опыты с сигнальными ракетами были повторены. В этот раз показателем эффективности служила дальность полета. Ракеты запускались под разными углами к горизонту. Лучшими по дальности, а частично и по точности, также оказались ракеты М.М. Поморцева[72].

Опыты со своими пороховыми ракетами Поморцев проводил не только на Николаевском ракетном заводе, но и на Петербургском артиллерийском полигоне, и в Севастополе. К сожалению, опыты с пороховыми ракетами по линии Главного артиллерийского управления Поморцеву не удалось закончить. Как уже говорилось выше, в конце 1906 г. ему пришлось отказаться от этой работы. Свое логическое продолжение опыты с пороховыми ракетами получили в 1913 г. в Аэродинамическом институте Рябушинского в Кучино и продолжались вплоть до смерти ученого.

Тем не менее в уже упоминавшемся журнале Артиллерийского комитета № 637 за 1908 г. написано: «1) Опыты ближайшего будущего на Николаевском ракетном заводе и Очаковском полигоне должны вестись главным образом над светящими ракетами, действующими горящим составом и снабженными направляющими; 2) так как участие генерал-майора Поморцева в этих опытах будет полезно для дела, то, ввиду его желания продолжать эти опыты, предложить ракетному заводу руководствоваться указаниями генерал-майора Поморцева и оказывать содействие при производстве опытов; 3) расходы на приборы, которые потребуется генерал-майору Поморцеву заказывать при изысканиях над ракетами, принять за счет казны, произведя заказы после ознакомления с устройством приборов по сведениям, которые должны представляться генералмайором Поморцевым».

Наряду с работами по усовершенствованию пороховых ракет Поморцев искал и другие источники энергии, которые можно было бы использовать в ракетах. Так, в 1903 г. он представил в Артиллерийский комитет программу опытов, в которых указывал, что одно из направлений улучшения качества реактивных снарядов будет заключаться «в выработке нового типа ракет, работающих не за счет горения порохового состава, но путем сжатого в гильзе ракеты воздуха»[73].

«Употребляемые ныне в Германии, Англии и Франции, — писал М.М. Поморцев, — манесмановские трубы для перевозки сжатого водорода для целей воздухоплавания весят около 70 кг, при чем в каждую из таковых труб нагнетается до 30 м³ водорода, сжатого под давлением 200 атм. Опустошение таковых труб при помощи особых вентилей совершается в 15 мин времени». Исходя из этих данных, Поморцев пришел к выводу, что можно изготовить подобные же трубы или гильзы массой от 10 до 20 кг, с нагнетаемым в них воздухом под давлением 150–200 атм. Их опорожнение могло бы совершаться за 2–5 мин. «Если снабдить таковые гильзы, — продолжал Поморцев, — тяжелыми головными частями, то при соответствующем устройстве подобные воздушные торпедо, обладая огромным запасом энергии, могли бы пробегать в воздухе значительные пространства»[74].

Журнал Артиллерийского комитета за № 554 от 3 ноября 1903 г. зафиксировал, что полковник Поморцев, кроме нового вида кольцевых стабилизирующих поверхностей к ракетам, предложил и «новый тип ракет со сжатым воздухом».

В октябре 1905 г. М.М. Поморцев представил уже довольно подробный проект ракеты, работаюшей на сжатом воздухе. Резервуаром для сжатого воздуха служила цельнотянутая стальная труба, выдерживающая давление свыше 200 атм. (при опытах в Кучино давление составляло 100–125 атм.). В трубу ввинчивалась стальная втулка с четырьмя выходными каналами диаметром 2,5 мм каждый. Отверстия каналов были симметричны относительно центральной оси и слегка наклонены наружу. Этим обеспечивались свободный выход воздуха из резервуара и уменьшение трения его о наружную стенку трубы. Внутри втулки четыре канала соединялись в общий канал, который выходил в резервуар и закрывался маленькой медной крышкой. К выступам канала посредством винта плотно прижимался эбонитовый кружок. Винт содержал капсюль, который при воспламенении электрической искрой проделывал отверстие в эбонитовом кружке. Отверстие обеспечивало доступ воздуха в каналы.

Н.А. Рынин писал, что пневматическая ракета, которая спустя 10 лет испытывалась в Кучино, имела сопло. Отверстие закрывалось пробкой, которая при помощи «остроумного приспособления» могла быть открыта в любой момент[75].

По расчетам Поморцева, точка приложения реактивной силы находилась впереди центра тяжести. Такое расположение этих двух характерных точек повышало устойчивость ракеты в полете. Повышали устойчивость пневматической ракеты и стабилизаторы, разработанные Поморцевым для осветительных ракет, — в передней части цельнотянутой трубы крепилась конусообразная головная часть. Здесь размещалось взрывчатое вещество или другой полезный груз.

Расчетная масса пневматической ракеты составляла 16–17 кг, что не превышало массу стандартной трехдюймовой осветительной ракеты. Резервуаром для сжатого воздуха служила труба, изготавливаемая во Франции. Ее диаметр составлял 0,1 м, а длина — 1 м. Она вмещала 1,5 м³ воздуха, сжатого до 200 атмосфер. Поморцев рассчитал, что в момент начала движения пневматической ракеты реактивная сила должна доходить до 40 кг и, постепенно снижаясь, действовать в продолжение 25 секунд. У пороховых ракет, как известно, вся энергия расходуется в течение 2–3 секунд, после чего ракета движется по инерции как баллистический снаряд.

Проект пневматической ракеты был одобрен Артиллерийским комитетом, и весной 1906 г. Поморцев приступил к подготовке намеченных опытов. В том же году на 5 месяцев он был командирован за границу «для решения задачи о применении сжатого воздуха к ракетам, снабженным бризантными зарядами» (это, вероятно, и был первый шаг к созданию реактивных снарядов для будущих «Катюш»).

В мае 1907 г. в химической лаборатории Михайловской артиллерийской академии было сосредоточено все оборудование, необходимое для проведения опытов. М.М. Поморцев решил сначала завершить серию опытов с пороховыми ракетами, чтобы затем продолжать исследования на основе полученных результатов.

Можно считать научным прогнозированием предположение Поморцева о том, что намного выгоднее употреблять сжатый воздух в комбинации с пороховыми газами, развивающими при горении высокую температуру.

В апреле 1908 г. Артиллерийский комитет рассмотрел результаты испытаний ракет конструкции Поморцева и дал им положительную оценку. Было отмечено, что роль этих опытов представляется особенно важной в свете того, что за последние 40 лет серьезных исследований в области пороховых ракет не проводилось: «…Опытами прошлого 1907 г. на Николаевском ракетном заводе положено начало для лабораторного научнотехнического исследования ракет»[76]. Артиллерийский комитет признал, что ракеты конструкции Поморцева по дальности полета значительно превосходят ракеты старого образца. Комитет, однако, не согласился с утверждением Поморцева, что предложенные им стабилизирующие устройства обеспечивают правильный полет, так как в отношении точности полета опыты не дали положительных результатов.

Опыты этой серии были первыми экспериментами подобного рода, выявив ряд недостатков: короткий станок не позволял ракетам набирать достаточно большую начальную скорость, не был подобран наилучший состав ракетной смеси, не были точно определены максимальное давление газов в гильзе ракеты и эффективные размеры отверстия для истечения газов. Отметив все это, Артиллерийский комитет тем не менее высказался за продолжение опытов.

При определении программы предстоящих исследований большое внимание было уделено разнообразию опытов с ракетами: по назначению (осветительные, боевые, сигнальные) и по источнику энергии (пороховые газы, сжатый воздух). В 1908 г. Артиллерийский комитет решил сосредоточить усилия на испытании осветительных пороховых ракет, как имеющих наибольшее практическое значение.

Тем не менее одному из отделов Артиллерийского комитета поручалось рассмотреть и пневматические ракеты Поморцева с тем, чтобы высказать свое мнение о целесообразности проведения опытных работ в этой области. «Опыты надлежит начать, — отмечалось в журнале Комитета, — с изучения горения динамометром, причем необходимо исследовать: а) значение ракетного состава и б) однообразия и плотности прессования; затем по конструкции гильз и их снаряжению: а) влияние размеров выходного отверстия и б) размеров ракетной пустоты. По выяснении этих элементов надлежит уже произвести пуск ракет с направляющими г.м. Поморцева на Очаковском полигоне, причем при стрельбе должны отмечаться места падения ракет…»[77].

Но когда была разработана программа испытаний, М.М. Поморцев ушел в отставку. Опыты с ракетами Поморцева были проведены на Николаевском ракетном заводе уже без его участия. Во второй половине 1908 г. Карабчевский и Деменков наметили и провели большое количество опытов с целью «определения оптимальных размеров ракетной пустоты, количества и площади поперечного сечения отверстий истечения газов»[78]. Экспериментаторы определили самые выгодные условия истечения газов.

Выйдя в отставку, М.М. Поморцев продолжал опыты со своими ракетами. Однако Главное артиллерийское управление было не довольно его активной работой в ряде общественных научных и технических обществ и устранило его от руководства опытами. Когда в 1908 г. Поморцев попробовал опубликовать результаты своих изысканий, генералинспектор артиллерии ввел режим секретности на результаты экспериментов.

В апреле 1909 г. в Очакове было запущено 38 различных типов ракет Поморцева с различных типов пусковых станков. Правда, к этому времени аппараты конструкции Поморцева были усовершенствованы специалистами Николаевского ракетного завода: Карабчевский и Деменков заменили пусковые станки длинной чугунной трубой, а у ряда ракет была изменена форма колпака с осветительным составом.

Дальность полета пневматической ракеты составила примерно 2,5 версты. При испытаниях они вели себя почти так же, как и пороховые: некоторые летели точно и устойчиво, какие-то отклонялись, а третьи при сходе с направляющей сразу же «клевали» в землю.

Эти опыты разочаровали представителей Арткома, ожидавших получить такие данные, «благодаря которым вопрос о новом типе ракет мог быть решен настолько, что эти ракеты можно будет начать изготовлять валовым образом»[79]. В начале 1910 г. Артком принял решение о прекращении испытаний ракет системы Поморцева. Однако не все специалисты были согласны с этим мнением.

«Работы по разработке ракет типа ген. майора Поморцева до настоящего времени не привели к удовлетворительным результатам, и хотя те частичные результаты, которых удалось достигнуть, дают право многим скептикам смотреть на идею ген. — майора Поморцева с большим сомнением, но я смею утверждать, что это сомнение должно отнести скорее к не совсем удачным способам ведения опытов, чем к самой идее… Лично я думаю, — писал в 1909 г. в Артиллерийский комитет Карабчевский, — что ракеты ген. — майора Поморцева имеют будущность»[80]. Карабчевский предложил для запуска ракет новый, более прочный и устойчивый пусковой станок. Он же предложил несколько новых опытов. Но этим планам не было суждено осуществиться: в 1910 г. Николаевский ракетный завод был закрыт. Больше опытов с ракетами Поморцева Артиллерийский комитет не проводил.

В 1912 г. М.М. Поморцев в журнале «Техника воздухоплавания» частично описал свои эксперименты. Он писал: «Так как для успеха каждого нового дела примеры прошлого далеко не бесполезны, то я решаюсь поделиться вкратце результатами тех скромных опытов в рассматриваемой области, которые были мною предприняты около 15 лет назад… Ракеты с такими приспособлениями, при общем весе от 10 до 12 кг и пущенные под углом в 30–40° к горизонту, достигли дальности до 8–9 км…»[81].

Несмотря на отставку, М.М. Поморцев не потерял интереса к ракетам. Однако его исследования затруднялись отсутствием в Петербурге аэродинамической лаборатории. Он обратился за помощью к Н.Е. Жуковскому и через него получил приглашение от Д.П. Рябушинского работать в его Аэродинамическом институте. Осенью 1913 г. М.М. Поморцев возобновляет исследования в области пневматических ракет в Кучинском аэродинамическом институте. Эти исследования после смерти ученого в самом разгаре работы были продолжены Д.П. Рябушинским, а их результаты опубликованы в 1920 г. в Париже.

Для определения импульса опытным путем Рябушинский подвешивал ракету к баллистическому маятнику и отмечал его отклонения при измерении дальности свободного полета ракеты. Используя динамометр, Д.П. Рябушинский строил кривые давлений истечения газов.

Маятник не давал достаточной точности измерений импульса, так как истечение газов не мгновенно, поэтому Рябушинский в своем институте построил баллистическое колесо диаметром 4 м. Ракета крепилась к рычагу колеса. Момент инерции массивного колеса был настолько велик, что ученый пренебрегал его изменением, вызванным истечением газа из ракеты. Скорость и угловое ускорение колеса измерялись хронографом. Таким образом, как писал Д.П. Рябушинский, «имелись все необходимые элементы для определения реакции и импульса ракеты». Впоследствии, уже в эмиграции, Рябушинский очень жалел, что не смог таким способом закончить испытания ракет Поморцева.

В некоторых исследованиях по истории ракетной техники утверждается, что на базе работ Поморцева перед Первой мировой войной в России были предприняты попытки создать новый тип боевой ракеты, предназначенной для борьбы с самолетами и дирижаблями противника. Если это так, то второй ракетный приоритет Поморцева — создание зенитных ракет.

Рябушинский также сообщал, что в его институте Поморцев проводил опыты и над своей пневматической ракетой. Длина этой ракеты составляла 2 м, ее корпус представлял собой стальную трубу с внутренним диаметром 7 см. Масса одного метра трубы равнялась 5 кг, масса сопла и дна — 2 кг, масса стабилизаторов — 0,5 кг. Ракетным топливом был порох или другое взрывчатое вещество. В ракету также помещались бензин или эфир, которые образовывали со сжатым воздухом взрывчатую смесь. Общая масса готовой к полету ракеты составляла 17,5 кг. Максимальная дальность полета ракеты 1317 м.

Уже без Поморцева Рябушинский провел третью серию экспериментов, в которых сжатый воздух заменил порохом. Такое топливо позволило значительно упростить конструкцию ракеты. Д.П. Рябушинский теоретическим путем определил давление и силу реакции в функции времени в таких ракетах, доказал, что импульс, сообщенный ракете, не зависит от площади сечения сопла, определил сам импульс. Достоверность теоретических исследований он подтвердил экспериментальным путем, дополнительно изучая процесс горения ракетного топлива внутри корпуса ракеты. При этом внутренние процессы в ракетном двигателе подчинялись теории реактивного движения. В 6-м выпуске трудов Кучинского института Рябушинский писал: «Я применяю к расчету ракеты Поморцева известную теорию истечения сжимаемой жидкости из сосуда, причем давление в нем уменьшается по мере истечения газа. Опыты, в общем, подтверждают эту теорию…»[82].

Дальнейшие опыты с ракетами Д.П. Рябушинский проводил уже в 1924 г. вдали от России. Результатами его исследований воспользовались итальянские инженеры, построившие в 1926 г. для воздушных судов специальное крупнокалиберное орудие.

Вернемся, однако, к опытам Поморцева, в которых он «в ракету помещал бензин или эфир, которые образовывали со сжатым воздухом взрывчатую смесь»[83]. Вот и А.Б. Шершевский, русский эмигрант в Германии, помощник выдающегося деятеля ракетно-космической техники Г. Оберта, также сообщал: «Генерал Поморцев: ревностный пионер и творец русского воздухоплавания. В 1913–1916 годах производил в институте Д.П. Рябушинского в Кучино под Москвой первые опыты с жидкостными ракетами (бензин и кислород)»[84]. Кстати, А.Б. Шершевский много сделал для популяризации на Западе идей К.Э. Циолковского. Однако Шершевский не является авторитетным специалистом в области ракетной техники. Тем более что и Оберт его работой был очень недоволен. Пришлось искать другие материалы по опытам Поморцева с жидкостными ракетами. Ведь речь идет о приоритете даты и места изобретения жидкостного ракетного двигателя.

Считается, что постройка Р. Годдардом в 1926 г. и Ф.А. Цандером в 1929 г. жидкостных ракетных двигателей является отправной точкой всех исследований по ракетным двигателям этого типа в мире. Если сравнить, например, пневматическую ракету Поморцева и опытный ракетный двигатель Цандера, то при всей внешней несхожести в конструкции двигателей обнаруживается много общего: использование в качестве окислителя сжатого воздуха, а в качестве горючего — бензина, наличие камеры сгорания, сопла и устройства воспламенения смешанных компонентов топлива и т. д. Можно считать, что приоритет нашей страны в создании жидкостного ракетного двигателя относится не к 1929 г., а к 1905 г. Автор приоритета — штатный военный преподаватель Михайловской артиллерийской академии М.М. Поморцев.

Когда авторы поделились этой мыслью с известным историком авиации Героем Социалистического Труда и лауреатом Ленинской премии В.И. Лавренцом, в прошлом заместителем основоположника советского ракетного двигателестроения В.П. Глушко, то на вопрос по содержанию третьего ракетного приоритета Поморцева он ответил утвердительно: «Да, Поморцев является изобретателем одного из первых в мире жидкостных ракетных двигателей».

Однако М.М. Поморцев включал жидкое топливо для повышения давления в камере сгорания, так как в его двигателе происходила реакция преобразования потенциальной энергии сжатого воздуха в кинетическую энергию. Цандер изобретал двигатель для движения в безвоздушном пространстве, получая энергию химическим способом. Б.Л Белов в выпуске № 6869 «Из истории авиации и космонавтики» (М., ИИЕТ, 1996) также пишет, что ракета Поморцева «относилась к ракетам, движение которых осуществлялось за счет реакции истечения газа в результате преобразования его потенциальной энергии в кинетическую энергию струи».

При изучении разностороннего материала по теме исследования складывается мнение, что в 1910–1930-е гг. ракетостроители в мире (а их было не так много) были связаны между собой и внимательно следили за работами друг друга. Например, с большой вероятностью можно утверждать, что Г. Оберт знал о работах Поморцева в области твердотопливных ракет через труды Рябушинского и Шершевского.

Очень интересной является также взаимосвязь судеб пионеров ракетоплавания. Так, в 1928 г. Г. Оберту был представлен немецкий энтузиаст-ракетчик Рольф Энгель, который через Оберта мог знать о работах русских ракетчиков. Эта история имеет продолжение. В 1944 г., когда выяснилось, что немецкие ракетные системы залпового огня не достигают дальности стрельбы снарядов «Катюш», работы по изучению конструкции советских ракет М-8 и М-13 и созданию аналогичных ракет в Германии возглавил тогда уже руководитель ракетного центра в Пршибраме Р. Энгель.

Анализируя исследования ракет, проведенные в России в начале ХХ века под руководством М.М. Поморцева, можно отметить следующее:

• В 1902–1907 гг. Поморцевым была создана крылатая ракета. Это был качественный скачок в конструкции ракет, так как на научноэкспериментальных основаниях длинный деревянный хвост был заменен крыльями, кольцевым, крестообразным или звездообразным стабилизаторами.

• Поморцев практически подошел к изобретению жидкостного ракетного двигателя.

• Поморцев ввел один диаметр для головной части и для корпуса ракеты, чем была улучшена аэродинамика ракет.

• Поморцев предложил цельнотянутую гильзу для корпуса ракеты вместо клепаной, благодаря чему улучшена технология изготовления ракет.

• Поморцев первым стал проводить стендовые испытания ракет.

Таким образом, к грандиозным успехам, достигнутым современным мировым ракетостроением, генерал-майор М.М. Поморцев имеет непосредственное отношение. Он первым поставил ракетостроение на рельсы осмысленного расчета и придал твердотопливным оперенным ракетам их современный вид.