Проблема с гравитацией

We use cookies. Read the Privacy and Cookie Policy

Отсутствие гравитации в Стандартной модели — это не просто упущение. На первый взгляд гравитация похожа на электромагнетизм. Например, ньютоновская сила тяготения, так же как и кулоновское электрическое взаимодействие, обратно 'квадратично зависит от расстояния. Однако все попытки разработать квантовую теорию гравитации по аналогии с теорией электромагнитного и других взаимодействий в Стандартной модели сталкивались с непреодолимыми трудностями.

Сила электрического взаимодействия между двумя заряженными частицами возникает вследствие непрерывного обмена фотонами. Частицы подобны двум баскетболистам, которые бегут вдоль площадки, перебрасываясь мячом. Аналогично, гравитационное взаимодействие можно описать как обмен квантами гравитационного поля, которые называют гравитонами. И такое описание действительно работает довольно хорошо, пока взаимодействующие частицы находятся достаточно далеко. В этом случае гравитация слаба, а пространство-время почти плоское. (Помните — гравитация связана с искривлением пространства-времени.) Гравитоны можно представлять как маленькие бугорки, скачущие между частицами на этом плоском фоне. Однако на очень маленьких расстояниях ситуация совершенно иная. Как говорилось в главе 12, квантовые флуктуации на коротких расстояниях придают пространству-времени пенообразную геометрическую структуру (см. рис. 12.1). Мы не знаем, как описывать движение и взаимодействие частиц в такой хаотической среде. Картина частиц, движущихся сквозь гладкое пространство-время и стреляющих друг в друга гравитонами, очевидным образом не подходит к этому состоянию.

Эффекты квантовой гравитации становятся существенными на расстояниях меньше планковской длины — это невообразимо малая величина, в 1025 раз меньше размера атома. Для изучения таких расстояний частицы должны сталкиваться с колоссальной энергией, лежащей далеко за пределами возможностей самых мощных ускорителей. На гораздо больших расстояниях, доступных для наблюдения, квантовые флуктуации геометрии пространства-времени усредняются, и эффектами квантовой гравитации можно безболезненно пренебречь. Однако в поисках окончательных законов природы нельзя игнорировать конфликт между эйнштейновской общей теорией относительности и квантовой механикой. В окончательной теории должны найти отражение как гравитация, так и квантовые явления. Так что оставить гравитацию в стороне — это не выход.