Туннелирование из ничего

We use cookies. Read the Privacy and Cookie Policy

Идея вселенной, материализующейся из ничего, повергает в недоумение. Что в точности означает "ничто"? Если это "ничто" способно туннелировать в нечто, что может вызвать первичный акт туннелирования? И что происходит с законом сохранения энергии? Но чем дольше я думал над этим, тем более важной казалась мне эта идея.

Начальное состояние, предшествующее туннелированию, — это вселенная с нулевым радиусом, то есть попросту отсутствие вселенной. В этом очень странном состоянии нет материи, нет пространства. Нет также и времени. Время имеет смысл, только если во вселенной что-то происходит. Мы измеряем время, используя периодические процессы, такие как вращение Земли вокруг своей оси или вокруг Солнца. Невозможно определить время в отсутствие пространства и материи.

И вместе с тем состояние "ничто" нельзя определить как абсолютное небытие. Туннелирование описывается законами квантовой механики, а значит, "ничто" должно подчиняться этим законам. Законы физики должны существовать, несмотря на отсутствие вселенной. Я коснусь этого вопроса подробнее в главе 19.

В результате акта туннелирования из ниоткуда рождается вселенная конечных размеров и немедленно начинает инфляционно расширяться. Радиус новорожденной вселенной определяется плотностью энергии вакуума: чем выше плотность, тем меньше радиус. Для вакуума Великого объединения это одна стотриллионная сантиметра. Вследствие инфляции эта крошечная вселенная растет с ошеломительной скоростью и за малую долю секунды намного превосходит размер наблюдаемой сегодня области.

Если до возникновения вселенной ничего не было, тогда что же вызвало туннелирование? Как это ни удивительно, ответ состоит в том, что никакой причины для этого не требовалось. В классической физике причинность диктует, что случится в каждый следующий момент времени, однако в квантовой механике поведение физического объекта по сути непредсказуемо, и некоторые квантовые процессы совершенно беспричинны. Возьмем, к примеру, радиоактивный атом. У него есть некоторая вероятность распада, остающаяся неизменной от минуты к минуте. В конце концов он распадется, но нет никакой причины, которая заставила бы его распасться в какой-то определенный момент. Зарождение вселенной также является квантовым процессом и не требует причины.

Большинство наших представлений неразрывно связаны с пространством и временем, и непросто создать мысленную картину вселенной, возникающей из ничего. Невозможно представить себя сидящим посреди "ничего" и ожидающим материализации вселенной, поскольку нет ни пространства, чтобы в нем сидеть, ни времени.

В некоторых недавно предложенных моделях, основанных на теории струн, наше пространство представляет собой трехмерную мембрану (брану), плавающую в многомерном пространстве. В таких моделях можно представить многомерного наблюдателя, следящего за маленькими пузырьками вселенных — "мирами на бране", — появляющимися то здесь, то там, как пузырьки пара в кипящем чайнике. Мы живем на одном из таких пузырьков, который является расширяющейся трехмерной сферической браной. Для нас эта брана — единственное существующее пространство. Мы не можем оторваться от нее и не замечаем дополнительных измерений. Если проследить историю нашей пузырьковой вселенной назад в прошлое, мы достигнем момента зарождения. За ним наше пространство и время исчезают.

От этой картины всего один маленький шаг до той, что я первоначально предложил. Просто уберите многомерное пространство. С нашей внутренней точки зрения ничего не изменится. Мы живем в замкнутом трехмерном пространстве, но это пространство не простирается повсюду. Если мы двинемся назад во времени, то обнаружим, что наша Вселенная имеет начало. И за ним нет пространства-времени.

Элегантное математическое описание квантового туннелирования можно получить, используя так называемое евклидово время. Это не то время, которое измеряется по часам. Оно выражается при помощи мнимых чисел, таких как квадратный корень из ?1, и вводится лишь для удобства вычислений. Превращение времени в евклидово странным образом влияет на пространство-время: различие между временем и тремя пространственными измерениями полностью исчезает, так что вместо пространства-времени получается четырехмерное пространство. Если бы мы могли жить в евклидовом времени, то измеряли бы его линейкой в точности так, как мы измеряем длину. Это может показаться довольно странным, однако описание, сделанное в евклидовом времени, очень полезно: оно обеспечивает удобный способ определения вероятности туннелирования и начального состояния вселенной в момент, когда она обретает существование.

Графически рождение вселенной можно изобразить пространственно-временной диаграммой на рисунке 17.2. Темная полусфера в нижней части отвечает квантовому туннелированию (в этой части пространства-времени время евклидово).

Светлая верхняя часть — это пространство-время инфляционной вселенной. Граница между этими двумя областями пространства-времени — это вселенная в момент зарождения.

Рис. 17.2. Пространственно-временная диаграмма вселенной, туннелирующей из ничего.

Замечательная особенность этого пространства-времени заключается в отсутствии сингулярностей. Фридмановское пространство-время имеет в начале сингулярную точку с бесконечной кривизной, где перестает работать математика эйнштейновских уравнений. Этой точке соответствует острый угол внизу левой схемы на рисунке 17.1. Напротив, в сферической евклидовой области нет таких точек; она повсюду имеет одинаковую конечную кривизну. Это было первое математически последовательное описание того, как могла родиться Вселенная. Пространственно-временная диаграмма на рисунке 17.2, напоминающая по форме бадминтонный волан, теперь стала логотипом Института космологии в Тафтсе.

Я описал все это в короткой статье, озаглавленной "Создание вселенных из ничего".[155] Перед отправкой ее в журнал я на один день заехал в Принстонский университет, чтобы обсудить эти идеи с Малкольмом Перри (Malcolm Perry), крупным специалистом в области квантовой теории гравитации. После часа, проведенного у доски, Малкольм сказал: "Да, пожалуй, это не столь безумно… И как я сам до этого не додумался?" Может ли физик сделать лучший комплимент коллеге!