9 Увеличение держащей силы
9 Увеличение держащей силы
Как «прописал» доктор Хейн
На первый взгляд изобретение капитана Холла — последний завершающий этап в многовековой истории якоря. Что еще можно придумать, если и так конструкция доведена почти до совершенства? Правда, держащая сила втяжных якорей меньше, чем у адмиралтейского якоря, но моряки уже давно свыклись с этим.
4 кгс на 1 кгс веса — вот предел держащей силы бесштокового якоря, который никто не сумел превзойти за полвека, кроме американского капитана Альберта Илла. Но якорь американца оказался неудобен для втягивания в клюз (см. рис. 172). Им больше пользовались спасатели для снятия севших на мель судов.
В начале 20-х гг. появилась более удачная конструкция. Выводы, к которым пришел немецкий инженер из Бремена Генрих Хейн после проведенных модельных и натурных исследований якоря Холла, можно назвать обескураживающими. Он установил: во многих случаях якоря с меньшей площадью лап держат лучше, нежели холловский якорь, и чем шире расставлены лапы якоря, тем меньше его держащая сила. Хейн понял, что на каждую из двух лап якоря могут действовать неодинаковые силы в зависимости от разницы в заглублений в грунт и от неоднородности грунта под якорем. Если одна из лап якоря попадает на камень, а другая уходит в мягкий грунт, неизбежно появление пары сил, стремящейся вырвать якорь из грунта. Хейн заметил, что обычно это происходит на песчано-каменистом и мелкокаменистом грунтах, на которых якорь перемещается резкими скачками, переворачиваясь с боку на бок. Пара сил появляется и при перемене направления ветра или течения, когда якорная цепь принимает различные направления относительно первоначального натяжения. При этом якорь раскачивается в грунте, вырывается из него и через некоторое время забирает опять.
Тщательные опыты в натурных условиях дали Хейну возможность понять, почему якоря Холла во время длительных стоянок при сильных ветрах «ползут», т. е. периодически выдергиваются и после некоторого протаскивания забирают снова. Моряки давно обратили внимание на это нежелательное, а порой и опасное, поведение втяжных якорей, но не могли понять его причину. А она, как это установил бременский инженер, крылась в самой форме якоря.
Оказывается, почти все создатели «патентованных якорей» стремились в первую очередь добиться того, чтобы лапы возможно быстрее входили в грунт. Однако никто из них не смог придумать ничего лучше, кроме захватов, выступающих в виде плит, лопат, крюков и всевозможной формы приливов в литых конструкциях якорей. В этих-то захватах, как говорится, и «была зарыта собака»! Их форму и размер конструкторы назначали «на глазок», и, как правило, опыты на моделях не проводились. Большие захваты самой различной формы достигали цели; якорь быстро забирал грунт и показывал при этом сравнительно большую держащую силу. Но никто не обратил внимания, что позднее всегда наступал момент, когда широкие захваты начинали играть отрицательную роль. Хейн доказал, что они, не давая якорю как следует углубиться в грунт, выдавливают и подгребают его под якорь, который в результате постепенно начинает влезать на образовавшийся перед его головной частью бугор. При этом якорь оказывается выше уровня грунта и при увеличении натяжения якорь-цепи выдергивается из бугра. Протаскиваемый снова по ровному грунту, якорь опять забирал, и все начиналось сызнова.
Интересно, что это явление не заметили ни на одном из официальных испытаний втяжных якорей: ни в Англии, ни во Франции, ни в Германии. Ведь якоря испытывали тогда каких-нибудь два-три часа, а не сутками во время шквалистых ветров на открытых рейдах. Больше того, раньше считали: чем больше якорь нагребает впереди себя грунта, тем лучше! Вспомним испытания якорей, проведенные Британским Адмиралтейством в сентябре 1891 г. на броненосце «Гироу». Ведь тогда после двадцати минут буксирования каждого из пяти якорей на грунт посылали водолазов измерить длину прорытой якорем борозды и зафиксировать форму и величину образовавшегося бугра. Никому и в голову не приходило, что именно этот бугор спустя некоторое время будет способствовать тому, что якорь окажется выдернутым из грунта. Наконец, стало ясно, почему на испытаниях в 1891 г. якорь Холла уступил первое место по величине держащей силы якорю Инглефильда. Тогда английские специалисты объясняли это более длинными лапами инглефильдовской конструкции. На самом же деле якорь Холла просто не мог зарыться в грунт так глубоко, как якорь Инглефильда, у которого вместо захватов был сравнительно узкий вкладыш в средней части рогов.
168. Якорь Хейна
Выявив в своем исследовании два промаха предшествующих изобретателей втяжных якорей — большой разнос лап и чрезмерно большие захваты, Генрих Хейн разработал принципиально новую конструкцию. На литой коробке его якоря нет каких-либо выступающих под прямым углом приливов и захватов. Коробку с лапами якоря можно даже назвать «обтекаемой». Лапы якоря максимально сближены. С одной стороны, это исключает появление пары сил, но с другой — якорь на грунте оказывается очень валким. Достаточно одного резкого отклонения якорь-цепи в сторону, и якорь опрокидывается на бок. Поэтому изобретатель сделал своего рода стабилизатор, отлитый вместе с коробкой. Расположенный в головной части, он не мешает втягиванию якоря в клюз. Держащая сила якоря Хейна на испытаниях оказалась в четыре раза выше, чем якоря Холла. Он глубже уходил в грунт, хотя забирал грунт позже, чем якоря с захватами.
А как же вообще этот якорь забирает грунт? — вправе спросить читатель. — Почему разворачиваются его лапы, если им нечем зацепиться за ровный грунт?
Оказывается, скосы на коробке якоря и на стабилизаторах служат как бы направляющими плоскостями для лап упавшего на грунт якоря. Под действием веса лапы лежащего на дне якоря «смотрят» вниз, они уже ниже оси вращения коробки. Конструкция сбалансирована так, что при протаскивании якоря по грунту развернуться вверх лапы не могут. Достаточно им зацепиться носками за грунт, как они без особого сопротивления начинают зарываться.
169. Якорь Грюзона-Хейна
Хейн считал: лучше потерять немного времени на зарывание якоря, но выиграть в величине держащей силы. И действительно, его якорь держал лучше всех втяжных якорей, изобретенных до него. Исследования бременского инженера не остались незамеченными. За работу «Исследование по держащей силе якоря и принцип работы якорей различных конструкций» автор в 1930 г. был удостоен в Германии ученой степени доктора технических наук. На предложенную конструкцию своего якоря Хейн получил патент (рис. 168). В промышленное производство якорь Хейна пошел в видоизмененном виде, так как по просьбе немецкой фирмы «Грюзон» автор, сохранив принцип конструкции, укоротил стабилизаторы. Одобренный в 1927 г. различными классификационными обществами, этот якорь, получив признание моряков, применяется и поныне (рис. 169).
Работа Хейна — четвертый крупный переворот в эволюции конструкции якорей. Фактически с него началось появление так называемых якорей повышенной держащей силы. Наиболее дальновидные конструкторы, поняв ценность сделанного открытия, пошли по пути немецкого инженера из Бремена.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Глава IX. Увеличение держащей силы
Глава IX. Увеличение держащей силы Как «прописал» доктор Хейн На первый взгляд изобретение капитана Холла — последний завершающий этап в многовековой истории якоря. Что еще можно придумать, если и так конструкция доведена почти до совершенства? Правда, держащая сила
3.2. Увеличение зоны действия пульта дистанционного управления
3.2. Увеличение зоны действия пульта дистанционного управления Пульты дистанционного управления (ПДУ) встречаются в комплекте практически с любой современной бытовой и электронной техникой. Кондиционеры, видеокамеры, музыкальные центры и домашние кинотеатры, СВЧ-печи –
Раздел 6. Увеличение производительности и эффективности вашего ПК или как сделать так, чтобы компьютер работал быстрее!
Раздел 6. Увеличение производительности и эффективности вашего ПК или как сделать так, чтобы компьютер работал быстрее! VI.1. Службы, которые, значительно влияют на быстродействие вашего компьютераМногие ищут в интернете ответ на вопрос, а как можно ускорить свой
14. "Боевые силы Черноморского флота можно признать достаточными"
14. "Боевые силы Черноморского флота можно признать достаточными" В 1890 г. Практическая эскадра провела в плаваниях четыре месяца. С вступлением кораблей в вооруженный резерв готовность флота к отражению нападения и к бою резко снижалась. Это хорошо понимали в Главном
Увеличение радиуса действия видеосистемы
Увеличение радиуса действия видеосистемы Радиус действия нашего небольшого передатчика лежит в пределах от V 30 до 100 м. Для увеличения радиуса действия необходимо применение другой системы – она называется любительским телевидением.Любительское телевидение
3. Силы, действующие в жидкости
3. Силы, действующие в жидкости Жидкости делятся на покоящиеся и движущиеся.Здесь же рассмотрим силы, которые действуют на жидкость и вне ее в общем случае.Сами эти силы можно разделить на две группы.1. Силы массовые. По-другому эти силы называют силами, распределенными по
5. Равновесие однородной несжимаемой жидкости под воздействием силы тяжести
5. Равновесие однородной несжимаемой жидкости под воздействием силы тяжести Это равновесие описывается уравнением, которое называется основным уравнением гидростатики.Для единицы массы покоящейся жидкости Для любых двух точек одного и того же объема, то Полученные
10. Определение силы давления в расчетах гидротехнических сооружений
10. Определение силы давления в расчетах гидротехнических сооружений При расчетах в гидротехнике интерес представляет сила избыточного давления Р, при:р0 = ратм,где р0 – давление, приложенное к центру тяжести.Говоря о силе, будем иметь в виду силу, приложенную в центре
Еще раз о держащей силе и оптимальной конструкции якоря
Еще раз о держащей силе и оптимальной конструкции якоря Теперь, когда читатель ознакомился со всеми основными конструкциями якорей, созданных человеком в течение пяти тысяч лет, вернемся еще раз к главному требованию, предъявляемому к каждому якорю, — максимальная
1.19. Четырехкратное увеличение энергетической производительности пятью маленькими шагами
1.19. Четырехкратное увеличение энергетической производительности пятью маленькими шагами Добиться повышения производительности энергоресурсов за один большой этап не всегда удается. Но ведь можно сделать это за несколько небольших этапов. Проиллюстрируем это простым
3.5. Четырехкратное увеличение пропускной способности железных дорог
3.5. Четырехкратное увеличение пропускной способности железных дорог Сценарии ужасов изобилуют сюжетами о столпотворении на европейских автомагистралях. Как ожидается, единый рынок, в котором в 1995 г. было уже 15 стран-участниц, приведет к 2010 г. к удвоению транспортных
Эволюция — это увеличение разнообразия, а не его уничтожение
Эволюция — это увеличение разнообразия, а не его уничтожение Философская суть, которую мы хотим донести, состоит в том, что все это является искаженным пониманием Чарльза Дарвина. Проще говоря, Дарвин описывал и объяснял увеличение разнообразия в процессе эволюции.
СКОВАННЫЕ СИЛЫ
СКОВАННЫЕ СИЛЫ Промышленные города дореволюционной России тонули в море деревень. Россия была страной аграрной.И пейзаж ее чаще был сельскохозяйственный, аграрный: поля и деревни, поля и деревни…Уездный город: домики в три окошка, тропинки на улицах, заросших травой,
IV. ЧЕЛОВЕК И СИЛЫ ПРИРОДЫ
IV. ЧЕЛОВЕК И СИЛЫ ПРИРОДЫ 1. Цветные слуги человека.Выло время, когда победители после войны забирали побежденных в плен и заставляли их работать на себя. Было время, когда помещики имели полную власть над крепостными, распоряжаясь их трудом, имуществом и даже жизнью. Выло
Силы, действующие на движущийся автомобиль
Силы, действующие на движущийся автомобиль Современный автомобиль легко приспосабливается к условиям движения, он то медленно передвигается по грязной и скользкой дороге, то поднимается в гору, то мчится по автобану. При этом колеса автомобиля могут вращаться с разной
Эталон силы света
Эталон силы света Свет — это электромагнитное излучение в диапазоне непосредственного восприятия человеком. Поэтому в технике и, соответственно, метрологии, ему уделяется большее внимание. Световых единиц, как известно, четыре — световой поток, сила света, светимость и