Беседа шестнадцатая

We use cookies. Read the Privacy and Cookie Policy

Беседа шестнадцатая

В этой беседе наши друзья приступают к изучению принципа преобразования частоты, на котором основаны приемники под названием «супергетеродинов». Начало этой беседы потребует от Незнайки-на, так же как и от читателя, повышенного внимания. Как только этот критический момент будет пройден, не будет ничего проще, чем понять изучаемые дальше различные схемы, включая применение в них октода и гептода.

НЕЗНАЙКИН ПРИВОДИТ В ЯРОСТЬ СВОЕГО СОСЕДА

Незнайкин. — Я не хочу прослыть мучеником, дорогой Любознайкин, тем не менее мне кажется, что я жертва науки.

Любознайкин. — Почему же, мой бедный Незнайкин?

Н. — Только что, выходя из дому, я встретил на лестнице соседа, который с яростным видом обещал надрать мне уши, если еще хоть раз по моей вине будет свистеть его приемник. Как-будто я могу заставить свистеть, петь или плакать его музыкальный ящик!!!

Л. — Не заблуждайся, Незнайкин. Твой регенеративный приемник (который стоил мне уже горьких упреков со стороны твоей матери) может заставить свистеть радиоприемники всех троих соседей. Достаточно тебе перейти через точку самовозбуждения, чтобы регенеративный приемник стал настоящим маленьких передатчиком. Вспомни нашу тринадцатую беседу.

Н. — Что ты говоришь? Допустим даже, что другие приемники примут волны, излучаемые моим приемником. Это не должно создавать никакого звука, так как они являются чистыми колебаниями высокой частоты без какой-либо модуляции.

Л. — Да, твой передатчик действительно излучает высокую немодулированную частоту. Этот ток после детектирования в радиоприемнике твоего соседа нельзя было бы услышать, если бы он не накладывался на токи высокой частоты передающих станций, которые твой сосед хочет слушать. Когда же два переменных тока различных частот накладываются друг на друга, то между ними наблюдается явление интерференции или биений; при этом как раз и может образоваться результирующий ток слышимой частоты.

Н. — Это странно. Мне казалось, что два тока высокой частоты, накладываясь друг на друга, должны образовать ток еще более высокой частоты.

Л. — Рассмотрим, если хочешь, этот вопрос подробнее. Допустим, что мы имеем два тока, частоты которых (и, следовательно, периоды) немного различны (f1 и f2 на рис. 91), и что оба тока начинаются в одно и то же мгновение. Вначале их амплитуды складываются и они взаимно усиливаются. Но в конце некоторого числа периодов сдвиг фаз увеличивается настолько, что амплитуды уже больше не складываются, а, наоборот, начинают вычитаться, так как токи проходят уже почти в противоположных направлениях. Токи взаимно компенсируются до некоторого минимума, когда периоды обеих кривых точно противоположны. Однако сдвиг фаз продолжает увеличиваться и мало-помалу взаимная компенсация начинает уменьшаться, пока токи не начнут опять складываться, достигая максимума в тот момент, когда оба тока снова точно совпадают по фазе. Затем все начинается сначала, так как сдвиг фаз между двумя токами непрерывно изменяется.

Ты видишь, что результирующий ток представляет собой пульсирующий ток, т. е. такой, амплитуда которого периодически увеличивается до некоторого максимума и уменьшается до минимума с частотой, значительно более низкой, чем частоты обеих составляющих токов. Если продетектировать результирующий ток, то можно получить ток с частотой F, который характеризует изменение амплитуды пульсаций (рис. 91). Частота результирующего тока равна разности частот обеих составляющих токов

Рис. 91. Сложение двух колебаний f1 и f2 образует сложное колебание f1f2, которое после детектирования дает ток частотой F.

Н. — Как это дьявольски сложно! Я попробую представить это себе на конкретном примере. Пусть два гребца, которые, не вынимая весел из воды, гребут с несколько различным ритмом. Там также, я думаю, возникнут биения. Как только движения гребцов совпадут, их маленькая лодка начнет сильно продвигаться вперед. Затем, когда слаженность работы гребцов начнет нарушаться и появится сдвиг фазы, скорость движения лодки уменьшится. Наконец, движения гребцов будут направлены навстречу друг другу, и лодка остановится. Мало-помалу восстановится согласованное движение весел и лодка начнет опять двигаться. Итак, лодка все время будет попеременно то двигаться, то останавливаться.

Л. — Я вижу, что ты понял сущность явления интерференции, являющейся результатом сложения периодических колебаний различной частоты.

Допустим теперь, что твой сосед слушает передачу на частоте 1000 000 гц и что твой регенеративный приемник излучает колебания на частоте 1 005 000 гц. Эти два тока, накладываясь в радиоприемнике твоего несчастного соседа, вызывают появление тока, частота которого будет равна разности принимаемых частот: 1 005 000 — 1 000 000 = 5 000 гц.

Этот результирующий ток с частотой 5 000 гц прекрасно слышен и проявляется в виде резкого свиста высокого тона. Вот каким образом ты донимаешь своего соседа.

Н. — Я тебя уверяю, что грешил по неведению, и теперь, когда я знаю…

Л. — …ты можешь понять легко теорию работы супергетеродинного приемника — приемника, основанного на явлении интерференции.

Н. — Значит, это приемник свистит постоянно?

Л. — Нет… или, если хочешь, это приемник, свист которого не слышен.

Н. — И после таких объяснений ты продолжаешь утверждать, что радио — это очень просто!..

ОТ ВЫСОКОЙ ЧЕРЕЗ ПРОМЕЖУТОЧНУЮ К НИЗКОЙ ЧАСТОТЕ

Л. — Не сердись, мой дорогой. В супергетеродинах создают биения между током высокой частоты принимаемой станции и током высокой частоты маленького генератора, называемого гетеродином, имеющимся в самом приемнике. Только настраивают гетеродин на такую частоту, при которой результирующая частота биений была бы относительно высокой, выше 100 кгц (обычно порядка 465 кгц); ток такой частоты, конечно, не слышен.

Н. — Я не вижу смысла в замене принимаемой высокой частоты — менее высокой, но еще не слышимой.

Л. — Позволь мне в двух словах объяснить тебе принцип работы супергетеродина, тогда тебе все будет ясно. Рассмотрим блок-схему супергетеродина, изображенную на рис. 92.

Рис. 92. Блок-схема супергетеродина.

УВЧ — усилитель высокой частоты; Г — гетеродин; С — смеситель; УПЧ — усилитель промежуточной частоты; Д — детектор; УНЧ — усилитель низкой частоты; Гр — громкоговоритель.

С одной стороны, мы имеем ток высокой частоты, наведенный в антенне волнами передатчика, а с другой — ток, несколько отличающийся по частоте и вырабатываемый местным гетеродином. Эти два тока накладываются друг на друга и образуют третий ток с частотой, которую называют промежуточной частотой (ПЧ). Этот ток промодулирован так же, как и первоначальный ток из антенны, так как произведенное преобразование не отразилось на модуляции, полученной в результате воздействия студийного микрофона на ток высокой частоты.

Однако ток промежуточной частоты значительно легче усилить, чем ток, полученный из антенны, в тех случаях, когда его частота ниже и, следовательно, паразитные емкости меньше сказываются. Этот ток усиливается в каскадах промежуточной частоты, затем детектируется, как и всякий ток высокой частоты; после этого выделенный ток низкой частоты усиливается в каскадах усиления низкой частоты и подается на громкоговоритель.

Н. — Я вижу, что супергетеродин — прибор ужасно сложный. Приемники, которые мы до сих пор изучали, состояли из каскадов высокой частоты, детекторного каскада и каскадов низкой частоты, в то время как в супергетеродинном приемнике имеются местный гетеродин, преобразователь частоты, каскады усиления промежуточной частоты, детекторный каскад и каскады усиления низкой частоты. Вероятно, настроить такой приемник очень трудно, так как вместо настройки на одну частоту, как мы делали до сих пор, необходимо настраивать входную цепь на частоту принимаемой станции, цепь гетеродина — на другую частоту, а цепи усилителя промежуточной частоты — на третью частоту.

НЕЗНАЙКИН ОЧАРОВАН СУПЕРГЕТЕРОДИНОМ

Л. — Успокойся, я тебе не открыл еще одного из главных преимуществ супергетеродина: цепи усилителя промежуточной частоты настроены раз и навсегда на одну и ту же постоянную частоту. Гетеродин настраивают так, чтобы для каждой принимаемой частоты его ток, складываясь с током антенны, давал всегда одну и ту же результирующую частоту, равную промежуточной.

Н. — Я думаю, что числовой пример здесь не будет лишним.

Л. — Допустим, что мы имеем супергетеродин, каскады промежуточной частоты которого настроены на частоту 465 кгц. Чтобы принять сигнал передающей станции с частотой 600 кгц (волна 500 м), необходимо настроить гетеродин на частоту 1 065 кгц; тогда результирующая частота будет равна разности составляющих частот: 1 065–600 = 465 кгц.

Чтобы принять другой сигнал с частотой 850 кгц надо настроить гетеродин на частоту 1 315 кгц; тогда мы снова получим 1 315 – 850 = 465 кгц.

Н. — Теперь мне кажется, что я понял. В результате контуры настройки усилителя промежуточной частоты совсем не надо настраивать каждый раз при переходе от одной станции к другой. Я думаю, что поэтому нам и не надо применять конденсаторы переменной емкости, потому что настройка контуров не меняется. Следовательно, в супергетеродине имеются только два контура, требующих настройки: входной контур (настраиваемый на принимаемый сигнал) и контур гетеродина (который надо настраивать на частоту, большую или меньшую, чем принимаемый сигнал, на величину промежуточной частоты).

Таким образом, настройка оказывается очень простой.

Л. — Еще проще, чем ты думаешь. Оба конденсатора обычно управляются одной и той же ручкой. При этом разность частот настройки постоянна, независимо от положения роторов конденсаторов.

Н. — Но каким образом осуществляют практически наложение двух колебаний?

Л. — Существует тысяча и один способ преобразования частоты, принцип действия которых примерно один и тот же. Поэтому достаточно рассмотреть основные и особенно наиболее распространенные.

Одна из наиболее старых схем (рис. 93) хорошо иллюстрирует принцип работы супергетеродина. В контур L2C2 гетеродина на отдельной лампе Л2 включена маленькая катушка связи L3, которая индуктивно связана с катушкой L1 входного контура. Благодаря этой связи колебания гетеродина вводятся в контур Л1С1. Таким образом, на сетку лампы Л1, одновременно подаются два переменных напряжения: напряжение, возбуждаемое в антенне, и напряжение от гетеродина. Лампа Л1 работает как анодный детектор благодаря смещению за счет сопротивления в ее катоде. В результате детектирования двух колебаний, поданных на сетку лампы Л1, образуется промежуточная частота.

Схема приемника включает также два каскада усиления промежуточной частоты (Л3 и Л4) с настроенной трансформаторной связью, затем детектор (Л5) и усилитель низкой частоты (Л6).

Pиc. 93. Схема супергетеродина с гетеродином на отдельной лампе.

Н. — Рассматривая схему, я вижу, что цепи настройки усилителя промежуточной частоты имеют шесть колебательных контуров. Думаю, что в результате этого приемник должен иметь огромную избирательность.

Л. — Конечно. В этом состоит еще одно преимущество супергетеродина. В приемниках прямого усиления на высокой частоте нельзя увеличивать число настраивающихся контуров, хотя бы из-за трудности одновременной настройки их конденсаторами переменной емкости. В то же время в супергетеродинах ничто не мешает увеличению числа колебательных контуров, потому что их настройка, по крайней мере в каскадах усиления промежуточной частоты, является неизменной.

Н. — Я чувствую, что очарован преимуществами приемника с преобразованием частоты. Могу я начать строить приемник по схеме, приведенной на рис. 93?

СЕТКИ РАЗМНОЖАЮТСЯ

Л. — И не мечтай. Эта схема полна недостатков. Уже давно не подводят к одному электроду лампы два колебания, а также избегают такой сильной связи между входным колебательным контуром и контуром гетеродина.

Н. — Сильная связь имеет недостатки?

Л. — Да, и серьезные. Так как разница в настройке контуров незначительна, гетеродин может начать генерировать колебания не на частоте контура L2C2, а на частоте входного контура L1C1; тогда не будет происходить преобразования частоты.

Это явление называют затягиванием колебаний.

Н. — Как это неприятно. Но я не вижу другого способа наложения колебаний, кроме индуктивной связи между контурами входа и гетеродина.

Л. — Способ заключается в применении многосеточных ламп, в простейшем случае с двумя сетками. Колебания гетеродина подаются на первую сетку (рис. 94), а колебания принимаемого сигнала — на вторую. Таким образом, одновременно два колебания действуют на анодный ток, который и будет являться результирующим. Ты видишь, что в этой схеме нет индуктивной связи между контурами L1C1 и L2C2.

Рис. 94. Преобразование частоты с помощью двухсеточной лампы Л1 и гетеродина с лампой Л2.

Н. — Действительно. Два колебания действуют на анодный ток независимо одно от другого.

Л. — Эта схема, когда-то очень популярная, сейчас уже тоже не применяется. Ее основным недостатком, помимо прочих, является сильная паразитная связь между колебательными контурами, обусловленная…

Н. — Я догадываюсь: емкостью между обеими сетками. Это так?

Л. — Ты прав. И поскольку ты так удачно угадываешь мои мысли, попробуй найти выход из положения.

Н. — Это легко. Достаточно поместить между сетками разделительную переборку, иными словами экранирующую сетку.

Л. — Еще более совершенный способ заключается в том, что одну из сеток, в частности сетку гетеродина, помещают между двумя экранирующими сетками и добавляют к тому же противодинатронную сетку.

Н. — На рис. 95 видно, что такой сеткой, образующей бутерброд, является ближайшая к аноду. Впрочем, я не усматриваю в этом каких-либо неудобств. Как же называется такая лампа с семью электродами?

Л. — Это гексод. Обе экранирующие сетки считаются за одну, и поэтому насчитывают шесть электродов. А по-гречески гекса — это шесть. С такой лампой можно не опасаться паразитных связей между приемным контуром и контуром гетеродина, работающим на триоде. При этом можно без всяких опасений разместить триод в одной колбе с гексодом и использовать для обеих ламп общий катод. Подобный триод-гексод находит наибольшее применение в современных приемниках.

Рис. 95. Значительно более совершенная схема преобразования частоты на гексоде.

Н. — Из рис. 95 можно заключить, что обе экранирующие сетки соединены между собой в самой колбе.

Л. — Это закономерно, так как напряжение на обеих сетках одинаково и подбирается с помощью гасящего резистора R, заблокированного конденсатором С.

В ЦАРСТВЕ СЕТОК

Н. — Триод-гексод является очень сложной системой, содержащей восемь электродов. Нельзя ли составить из них одну систему электродов вместо того, чтобы располагать рядом две системы? Так, например, можно было бы уменьшить размеры анода триода так, чтобы этого было достаточно лишь для самовозбуждения гетеродина. Электронный поток при этом свободно проходил бы к следующим электродам, входящим в систему гексода: к первой экранирующей сетке, к сетке, на которую подается принимаемый сигнал….

Л. — и которую называют управляющей

Н. — Благодарю! И, наконец, ко второй экранирующей сетке и к аноду.

Л. — Ты только что, дорогой Незнайкин, повторно изобрел гептод (лампу с семью электродами). И если ты добавишь еще противодинатронную сетку, ты получишь октод — Лампу с восемью электродами (рис. 96).

Рис. 96. Схема преобразования частоты на октоде.

Н. — И такая лампа существует?

Л. — Лучше сказать существовала, так как в настоящее время отказываются и от гептодов и от октодов, предпочитая триод-гексоды, обеспечивающие наименьшую связь между принимаемыми сигналами и колебаниями гетеродина.

Н. — Я совершенно подавлен таким изобилием сеток. Чтобы как-то разобраться во всем этом, я попытаюсь сам сформулировать роль различных электродов октода:

1) катод, служащий, очевидно, для излучения электронов;

2) первая сетка местного гетеродина;

3) маленький анод гетеродина;

4) первая экранирующая сетка, предназначенная для устранения паразитной емкости между гетеродинной сеткой и сигнальной сеткой, на которую подаются колебания из антенны;

5) сетка, к которой приложены колебания антенны;

6) вторая экранирующая сетка, предназначенная для ускорения движения электронов;

7) защитная сетка, мешающая вторичным электронам возвращаться с анода на вторую экранирующую сетку;

8) анод, с которого снимается результирующий ток промежуточной частоты.

Л. — Отлично. Я вижу, что ты в этом правильно разобрался.

Н. — Но я все же не понимаю, как сами электроны ориентируются во всех этих сетках и не ошибаются дорогой.