Беседа двадцать первая

We use cookies. Read the Privacy and Cookie Policy

Беседа двадцать первая

После изучения принципов передачи с частотной модуляцией наши юные друзья рассмотрят различные особенности ЧМ приемников, в частности каскадную схему, дискриминатор, детектор отношений, ограничитель и пр…

ВСЕ ОТНОСИТЕЛЬНО

Незнайкин. — Все, что ты объяснил в последний раз о частотной модуляции, не давало мне покоя. Все эти понятия довольно неопределенны. Различным интенсивностям низкой частоты соответствует более или менее значительная девиация несущей частоты. А частоте модулирующего напряжения соответствует… Как это сказать?., частота изменения частоты несущей?

Любознайкин. — Хотя ты и не очень изящно излагаешь свои мысли, но говоришь вполне здраво.

Н. — Я думал также о способах приема ЧМ колебаний. Полагаю, что обычные радиоприемники, предназначенные для амплитудной модуляции, не годятся для этой цели. Ведь если продетектировать такую модулированную высокую частоту, у которой все амплитуды одинаковы, получится постоянное напряжение, а не низкочастотное модулирующее. Прав я или нет?

Л. — Безусловно прав. Обычные схемы детектирования при ЧМ модуляции не применяются. Но это не единственная особенность ЧМ приемников.

Н. — Я не вижу причин отказа от классической схемы супергетеродина, если не считать детекторного каскада.

Л. — Супергетеродин является схемой, повсеместно принятой для частотной модуляции. Но и сама схема и ее элементы существенно отличаются от классических. Ты, кажется, забыл, что передача осуществляется в метровом диапазоне волн, т. е. на частотах порядка сотен миллионов герц, и что, кроме того, боковые полосы простираются в стороны от несущей на сотню тысяч герц вместо тощих 4 500 гц при AM модуляции.

Н. — Правильно, об этом я не подумал. Следовательно, нужно предусмотреть как в высокой, так и в промежуточной частоте колебательные контуры с полосой пропускания порядка 200 кгц.

Л. — Это так. Даже до 300 кгц. И так как это было бы крайне трудно осуществить на промежуточной частоте 465 кгц, для усилителя промежуточной частоты выбрана частота 8,4 Мгц (в телевидении иногда 6,5 Мгц).

Н. — Мне это ясно. Для трансформатора промежуточной частоты, настроенного на 465 кгц, полоса пропускания 300 кгц составляет больше половины резонансной частоты, в то время как для 8,4 Мгц та же полоса пропускания не превышает 4 %.

Л. — Все относительно… Но каждая медаль имеет обратную сторону. При усилении широкой полосы частот нельзя получить большой коэффициент усиления. Поэтому приходится применять два и даже три каскада промежуточной частоты.

Н. — А это не освобождает от необходимости применения предварительного усиления по высокой частоте?

Л. — Ни в какой степени. Следует рекомендовать применение одного каскада усиления высокой частоты перед смесителем. Но обычные схемы усиления для столь высоких частот недостаточно удовлетворительны. Не очень пригодны для этого и пентоды вследствие повышенного уровня их шумов. Несмотря на более низкий коэффициент усиления, лучше применять триоды.

Н. — Все качества несовместимы!

Л. — Не изрекай, Незнайкин. И не забывай, что триод обладает очень серьезным недостатком, о котором мы много говорили.

НЕ ГЛУПОСТЬ ЛИ ЭТО?

Н. — Ты говоришь о пресловутой емкости катода или сетки относительно анода, которую уменьшают с помощью экранирующей сетки.

Л. — Вот именно. Поскольку мы не хотим прибегать ни к тетродам, ни к пентодам, необходимо известное ухищрение для компенсации действия этой емкости. Оно заключается в том, что управляющей сетке поручается роль экранирующей. Для этого на сетке поддерживается постоянный потенциал, равный потенциалу отрицательного вывода источника питания (заземления). Такая схема называется схемой с заземленной сеткой (рис. 123).

Рис. 123. Схема усилителя с заземленной сеткой.

Н. — Но это чистейшая глупость! При заземлении сетки ты уже не можешь подать на нее напряжение, подлежащее усилению.

Л. — Совершенно очевидно. Поэтому напряжение подают на катод, как это отчетливо видно на схеме.

Н. — Час от часу не легче! Значит, катод, если я понял, становится управляющим электродом?..

Л. — Не все ли равно? Для управления анодным током важно ведь только, чтобы изменялась разность потенциалов между сеткой и катодом. Совершенно безразлично, меняется ли напряжение на сетке относительно катода или напряжение на катоде относительно сетки.

Н. — Действительно, ты прав. Схема с заземленной сеткой не так уж отличается от обычных схем. Совсем как в семействе моих соседей…

Л. — Какую еще глупость ты собираешься изречь?

Н. — Это не глупость. У моих соседей мать не ладит с дочерью. То одна из них нападает на другую, хотя бы та и была мирно настроена, то наоборот. Но независимо от инициатора очередной ссоры отец семейства каждый раз обрушивается на обеих, так как он играет роль усиленного анодного тока.

Л. — Ты это придумал специально для данного случая…

Н. — Меня интересует одно обстоятельство в схеме. Почему на катод подается часть напряжения от вывода на катушке контура, а не все напряжение колебательного контура?

Л. — Потому что в схеме с заземленной сеткой входное сопротивление лампы весьма незначительно. В случае включения всего колебательного контура в цепь катода его затухание значительно увеличилось бы и коэффициент усиления упал бы. Поэтому напряжение на катод снимают с части контура. Существует, однако, другой способ, позволяющий избежать увеличения затухания входного контура. Ты не догадываешься?

Н. — Нет, я пасую.

Л. — Достаточно включить перед триодом с заземленной сеткой другой усилительный триод с обычной схемой включения (рис. 124).

Рис. 124. Схема каскодного усилителя. Включение резистора R1 необязательно.

КАСКОД — ДВА КАСКОДНО ВКЛЮЧЕННЫХ КАСКАДА

Н. — Не издеваешься ли ты надо мной, Любознайкин? Такая схема не может работать, так как нагрузка первого каскада — резистор — заземлена, иными словами, присоединена к минусу источника питания Поэтому на аноде лампы отсутствует положительное напряжение. И хоть становись на колени перед таким триодом, который по-твоему (какая самоуверенность!) включен по обычной схеме, он не только не усилит, но даже не передаст на следующую лампу входное напряжение.

Л. — Это ты слишком самоуверен. Такая схема, называемая каскодной, незначительно отличается от обычной схемы, столь рьяно тобой защищаемой. Вопреки твоему утверждению на анод первой лампы подается положительное напряжение и схема xoрошо работает.

Н. — Откуда же берется напряжение?

Л. — Из анодной цепи второй лампы, присоединенной к плюсу источника питания.

Н. — Значит, в качестве анодного напряжения первой лампы используется падение напряжения на резисторе R1 в цепи катода второй лампы? Этот резистор включен последовательно с резистором R2, шунтирующим конденсатор связи С?

Л. — Конечно. Оба эти резистора и сопротивление промежутка анод — катод второй лампы соединены последовательно и образуют делитель напряжения, включенный между плюсом и минусом источника питания. Поэтому точка соединения резисторов R1 и R2, куда присоединен и анод первой лампы, находится под положительным потенциалом. Он достаточно велик, так как сопротивление резистора R1 составляет около 0,5 Мом, а сопротивление R2 — несколько сотен ом.

Н. — Каюсь! Я мог бы это и сам сообразить. Вдобавок можно отметить, что разности потенциалов на электродах второй лампы с заземленной сеткой правильно распределены, так как ее катод находится под положительным потенциалом и, следовательно, сетка отрицательна относительно катода. Все к лучшему в этом лучшем из миров!

ЗАБЫТАЯ СХЕМА ВОЗРОЖДАЕТСЯ

Л. — Это возможно. Однако из-за твоих беспорядочных расспросов я был вынужден начать изучение ЧМ приемника с промежуточной частоты, затем перейти к высокой частоте, что явно нелогично.

Н. — Значит, можно кое что рассказать и о смесителе?

Л. — Безусловно, так как на столь высоких частотах обычные смесители мало эффективны. За редкими исключениями, в смесителях ЧМ приемников отказались как от гептодов, так и от триод-гексодов (в которых входной сигнал и напряжение от гетеродина подаются на разные сетки) и вернулись к старой схеме с отдельным гетеродином. При этом входной сигнал и напряжение гетеродина подаются на одну и ту же сетку (рис. 125).

Рис. 125. В смесителе на двух триодах приходящие колебания и колебания гетеродина подаются на одну и ту же сетку.

Н. — Ну, уж тут ты явно издеваешься надо мною. Полагаешь ли ты, что я забыл все описанные тобою недостатки этой схемы? Я вспоминаю, что главным пороком является опасность увлечения частоты гетеродина приходящим сигналом.

Л. — Действительно, иногда очень трудно избежать такой игры этих двух колебаний, полностью нарушающей работу смесителя.

Н. — Зачем же применять схему со столь серьезным недостатком в ЧМ приемниках?

Л. — Потому что разнос частот в несколько мегагерц (определяемый промежуточной частотой) достаточен, чтобы синхронизации не возникало.

Н. — Таким образом, в схеме используются два триода. Один из них является смесителем. На его сетку подаются предварительно усиленные входные сигналы и через конденсатор связи С напряжение гетеродина.

Л. — Именно так. Часто используют двойной триод. В этом случае отпадает необходимость в конденсаторе связи С, так как междуэлектродные емкости двух секций двойного триода создают достаточную связь.

Н. — Нельзя ли, однако, применить пентод в качестве смесителя? Это увеличило бы его коэффициент усиления.

Л. — Так иногда и поступают. Правда, при этом возрастают шумы. Все та же обратная сторона медали…

В ЦАРСТВЕ СИММЕТРИИ

Н. — После того как мы разобрали предварительный усилитель высокой частоты, смеситель и усилитель промежуточной частоты, остались лишь детектор и усилитель низкой частоты.

Л. — В ЧМ приемниках нужно говорить о частотном детекторе (демодуляторе). Частотное детектирование может быть осуществлено с помощью различных схем.

Н. — Очевидно, их роль независимо от схемы сводится к преобразованию девиации частоты в изменения амплитуды.

Л. — Ты не ошибся. Это достигается в результате применения контуров, настроенных на среднюю частоту, т.е. на промежуточную частоту, соответствующую отсутствию модуляции. Контуры включены по симметричной схеме, так что выходное напряжение равно нулю или некоторой постоянной величине. Как только несущая частота начинает изменяться в ту или иную сторону, симметрия нарушается и появляется переменное напряжение.

Н. — Может быть, в твоем объяснении заключена глубокая мудрость, но для меня это звучит крайне абстрактно. Не изобразишь ли ты для пояснения схему?

Л. — Вот наиболее распространенная схема так называемого дискриминатора (рис. 126). Сразу бросается в глаза полная симметрия схемы. Обрати внимание на то, что, кроме индуктивной связи между последним каскадом усилителя промежуточной частоты и дискриминатором, имеется емкостная связь через конденсатор С, включенный точно в среднюю точку вторичной обмотки трансформатора.

Рис. 126. Схема частотного дискриминатора.

Н. — Я полагаю, что собака зарыта именно тут, в дискриминаторе.

Л. — Твоя интуиция тебя не обманула. Напряжение, подаваемое через конденсатор, сдвинуто по фазе относительно напряжения, наведенного в результате магнитной связи. До тех пор, пока частота обоих напряжений равна резонансной частоте контуров (трансформатора), напряжения на обоих концах вторичной обмотки одинаковы относительно средней точки.

Н. — Я угадываю дальнейшее. Эти напряжения детектируются диодами Л1 и Л2, в результате чего на резисторах R1 и R2 возникают равные постоянные напряжения противоположных полярностей. Я хочу сказать, что положительные потенциалы в точках А и Б относительно точки X будут равны и, следовательно, взаимно компенсируются.

Л. — Держу пари, Незнайкин, что ты опустошил еще одну банку сардин и пополнил свой мозг фосфором… Продолжай, поскольку твои рассуждения совершенно правильны.

Н. — Легче легкого. Допустим, что сигнал промодулирован, иными словами частота увеличивается или уменьшается относительно среднего значения. При этом частота отклоняется относительно резонансной частоты контуров, симметрия нарушается и напряжение на одном из концов вторичной обмотки трансформатора относительно средней точки оказывается выше, чем на другом конце. Вследствие этого после детектирования равенство напряжений в точках А и Б относительно точки К больше не будет соблюдаться. Напряжение между точками А и Б будет равно их разности. Это напряжение и явится искомым напряжением звуковых частот.

Л. — Поздравляю, дружище. Ты избавил меня от необходимости анализировать работу схемы. Можно лишь добавить, что конденсаторы, включенные параллельно резисторам R1 и R2, выполняют обычную роль подавления составляющей промежуточной частоты.

ДЕТЕКТОР ОТНОШЕНИЙ

Н. — Применяется только один тип дискриминатора?

Л. — Нет. Имеются различные варианты схемы. Но все они основаны на одном и том же принципе симметричной схемы и использования продетектированных напряжений противоположной полярности. Однако существуют частотные детекторы, в которых использованы несколько другие принципы. Один из них, так называемый детектор отношений, я изобразил на рис. 127.

Рис. 127. Схема детектора отношений.

Н. — Но эта схема чрезвычайно похожа на схему дискриминатора. Та же симметрия, такая же смешанная индуктивно-емкостная связь. Только ты, вероятно, ошибся в изображении диодов, так-как выпрямленные напряжения не компенсируются взаимно, а суммируются.

Л. — Нет, это не ошибка. Действительно, нужно, чтобы напряжения, заряжающие конденсатор большой емкости С3 (электролитический в несколько микрофарад), складывались. На его обкладках, иными словами между точками А и Б, устанавливается постоянное напряжение. Что же касается точки X, то ты догадываешься…

Н. — … что напряжение на ней должно быть ровно вдвое меньше, так как симметрично включенные элементы C1 и С2, так же как и R1 и R2, равны.

Л. — Сардины продолжают оказывать благотворное влияние на твой интеллект! В отсутствие модуляции все действительно обстоит так. Но как только частота начинает меняться относительно резонансной частоты контуров…

Н. — … напряжение, продетектированное одним из диодов, становится больше или меньше другого продетектированного напряжения. Поэтому точка X уже не будет в середине напряжения между точками А и Б.

Л. — В который уже раз ты высказываешь, хотя и не в очень изящном виде, неоспоримые истины. Следует подчеркнуть, что при изменении частоты напряжение между точками А и Б не меняется (так как оно не зависит от частоты). Меняется лишь отношение напряжений между точками X и Б и между точками X и А.

Н. — В результате между точками X и Y возникнет напряжение низкой частоты, так как в каждый данный момент оно будет пропорционально отклонению частоты от среднего значения, соответствующего отсутствию модуляции.

Л. — Ты рассуждаешь, как Эвклид и Декарт, вместе взятые!

Таким образом, в детекторе отношений напряжение между точками X и Y зависит в каждый данный момент только от частоты несущей, в то время как полное напряжение между точками А и Б совсем не зависит от частоты.

Н. — Я полагаю, что это напряжение зависит от амплитуды продетектированного сигнала.

Л. — И ты не ошибаешься. Именно поэтому оно может быть использовано для автоматической регулировки усиления приемника (АРУ).

ДОЛОЙ ПОМЕХИ!

Н. — Таким образом, напряжение между точками А и Б зависит от амплитуды, а между точками X и Y — от частоты. Это наводит меня на одну мысль, которая, может быть, покажется тебе смешной.

Л. — А, может быть, и нет. Говори же.

Н. — Как ты знаешь, я очень страдаю из-за помех от неоновой рекламы на нашем доме, создающей невероятные трески в моем приемнике. Эти помехи возникают в результате того, что принимаемые колебания модулируются по амплитуде возмущающими напряжениями. Следовательно, если я буду принимать с помощью детектора отношений частотно-модулированную передачу, эти помехи, воздействующие на амплитуду, а не на частоту сигнала, будут отсутствовать в сигнале низкой частоты между точками X и Y..

Почему ты смеешься, Любознайкин? Я сказал что-нибудь абсурдное?

Л. — О нет, наоборот, Незнайкин. Все, что ты сказал, совершенно правильно. Я просто подумал, что если мне придется излагать тебе сложную теорию операционного исчисления, то тебе достаточно будет поглотить лишь соответствующее количество сардин для стимулирования логических свойств твоего мышления…

Н. — Значит, кроме высокого качества музыкального воспроизведения (неограниченного ни по полосе, ни по динамическому диапазону), ЧМ передаче свойственна также высокая помехозащищенность. Это поистине замечательно!

Л. — Не торопись, дружище. Это почти так в случае детектора отношений, но совсем не так при приеме на дискриминатор, реагирующий на изменения как частоты, так и амплитуды.

Н. — Как жалко! Неужели не существует способа ограничить изменения амплитуды, поскольку они совершенно бесполезны и лишь способствуют проникновению помех при приеме?

Л. — Это можно сделать и это в действительности осуществляют в амплитудном ограничителе.

Н. — А что это такое?

Л. — Это устройство, которое включают перед частотным детектором и которое ограничивает на заданном уровне амплитуду сигнала. Все значения амплитуд, превышающие некоторое заданной значение, как бы подрезаются (рис. 128). Благодаря этому исключаются все изменения амплитуды, вызываемые как помехой, так и замираниями сигнала.

Рис. 128. Рисунок, поясняющий принцип двустороннего ограничения частотно-модулированных колебаний, амплитуда которых не сохраняет постоянной величины.

Н. — Твой ограничитель напоминает мне горшок, которым пользуются некоторые деревенские парикмахеры для стрижки клиентов. Все, что выходит за пределы горшка подстригается.

Л. — Я никогда не был жертвой такой операции.

Н. — Но как же устроен амплитудный ограничитель?

Л. — Наиболее распространена схема насыщенного пентода. Режим пентода выбирают таким образом, чтобы характеристика зависимости анодного тока от сеточного напряжения имела ярко выраженный горизонтальный участок (рис. 129). При достаточно большом напряжении сеточного возбуждения колебания выйдут за пределы линейного участка и будут ограничены на уровне верхнего и нижнего изгибов характеристики.

Рис. 129. Амплитудное ограничение происходит на верхнем и нижнем изгибах характеристики.

Н. — А как же удается создать характеристику такой необычной формы?

Л. — Подавая на экранирующую сетку незначительное напряжение (от 5 до 15 а). Его можно получить, например, с помощью гасящего резистора R с очень большим сопротивлением (рис. 130). Иногда при этом уменьшают и анодное напряжение.

Рис. 130. Схема амплитудного ограничителя.

Н. — Бедный голодающий пентод! Он, естественно, настолько слабеет, что не имеет сил передать амплитуды, превышающие некоторое значение… А какую роль играют в схеме резистор R1 и конденсатор С? Не имеет ли здесь место сеточное детектирование?

Л. — В известной мере, да. Благодаря падению напряжения на резисторе R1, возникающему из-за наличия сеточных токов, рабочая точка устанавливается таким образом, что получается наилучший режим амплитудного ограничения.

Н. — Мы можем приступить теперь к разбору цепей низкой частоты ЧМ приемника. Я полагаю, что и там должны быть какие-нибудь особые схемы.

Л. — На этот раз ты ошибся. Усилитель низкой частоты ЧМ приемника должен быть только очень высокого класса, чтобы не исказить ни амплитудную, ни частотную характеристику. Нужен также высококачественный громкоговоритель, и лучше не один, а несколько. Но я отмечаю, что эффект поглощения сардин исчезает и поэтому отпускаю тебя для пополнения запасов фосфора…