Человек-амфибия

We use cookies. Read the Privacy and Cookie Policy

Человек-амфибия

Ты обладаешь тем, чем не обладает ни один человек: способностью жить под водой…

А. Беляев

Никогда еще Кристо не приходилось видеть столь необычных животных. Из травы, из зарослей кустарников, с деревьев глядели на него необычные звери, гады и птицы: собаки с кошачьими головами, гуси с петушиной головой, рогатые кабаны, страусы с клювами орлов, змеи с рыбьей головой и жабрами.

Какое-то существо с шумом выскочило из-за ветвей и бросилось в бассейн, подняв тучи брызг. Кристо казалось, что он бредит. На дне бассейна, на белых каменных плитах, сидела… обезьяна. С испугом и любопытством она глядела из-под воды на Кристо. Кристо не мог прийти в себя от удивления: обезьяна дышала под водой. Рот открыт, бока ходят ходуном…

Киевские Сальваторы

В аквариуме — стальной герметической камере с просторными иллюминаторами — плавала белая мышь. Быстро-быстро перебирая лапками, она спустилась на дно и уткнулась крошечным носом в прозрачное оконце водяного домика.

Ихтиандр, Сальватор, обезьяны, которые живут в бассейне, — все это знакомые лица, герои романа Александра Беляева «Человек-амфибия». Но белая мышь? О ней у Беляева не сказано ни слова.

Значит, тоже фантастика, но только из другого романа?

Вовсе нет! Это уже не вымысел, а реальный факт, эксперимент, осуществленный в одном из научно-исследовательских институтов.

Ученые приступили сейчас к осуществлению одной из самых «сумасшедших» идей нашего времени: к созданию человека-амфибии, который в будущем станет хозяином океанских глубин.

На разведку ученые, как обычно, выслали животных. С одним из них — белой мышью — мы уже успели познакомиться.

Это был юркий, подвижный зверек, ни секунды не сидевший спокойно. При виде людей он занервничал, стал к чему-то принюхиваться, внимательно смотрел на окружающих красными глазками-бусинками. Но, что запомнилось, зверек ни разу не взглянул на стоявшую рядом с ним массивную стальную камеру — подводный домик, в который ему сейчас предстоит войти. Оранжевые толстые иллюминаторы не будили в нем страха. Однако вскоре мышь потеряла всякий интерес к присутствующим и продолжала заниматься своими делами… Фотокорреспонденту не удалось запечатлеть момент, когда зверек пулей влетел сквозь открывшийся шлюз, развернулся в воде, а затем бросился к иллюминатору. Мы растерялись, потрясенные необычностью происходящего. Лишь спустя двадцать секунд щелкнул затвор фотоаппарата. Животное к этому времени принялось обследовать все уголки необычной подводной квартиры, — таково документальное свидетельство очевидца этого удивительного эксперимента.

Где же произошло это чудо и кто совершил его?

В роли легендарного доктора Сальватора выступил молодой физиолог Владлен Козак. Вместе с ним в проведении экспериментов участвовали Михаил Иродов, Владимир Демченко и еще несколько сотрудников лаборатории гидробионики в Киеве.

…Кислорода в воде обычно немного. Рыбы фильтруют сквозь жабры огромное количество жидкости, чтобы получить необходимую порцию «газа жизни». А как быть в этой стихии обладателю легких? Ведь они в отличие от жабр не приспособлены к тому, чтобы добывать кислород из воды, у них иная конструкция, иной принцип работы.

Но, оказывается, дело не только в несовершенстве легких, но и в количестве кислорода, растворенного в воде.

Известно ведь, что рыба гибнет в озере, скованном льдом, в котором нет отдушин. Гибнет она из-за недостатка кислорода и в затхлом, зарастающем пруду.

Наблюдения показали, что легкие млекопитающих, как и жабры рыб, все же могут извлекать содержащийся в воде кислород. Разница в том, что рыбы довольствуются самой незначительной концентрацией кислорода в воде.

Для животных, чтобы они выжили, не захлебнулись, необходимо растворить десять-пятнадцать процентов кислорода, а то и больше. Тогда животное начинает… дышать водой! Вдох — выдох, вдох — выдох… Как обычно! Именно так и вела себя белая мышь.

Конечно, этот опыт не получился бы, если бы мышь попала в обычный аквариум. Вода не удержит столько кислорода: газ сразу же улетучится из нее, подобно пузырькам воздуха, которые попадают в стакан с водой, если дуть в него через соломинку.

— В чем же дело?

— В давлении!

Вспомните минеральную воду или шампанское в бутылках.

Откройте пробку — раздается легкий хлопок, давление моментально падает до комнатного, и газы, растворенные в жидкости, цепочкой пузырьков потянутся к горловине бутылки.

При избыточном давлении, равном десяти атмосферам, — такое давление царит на глубине ста метров — вода растворяла примерно столько же кислорода, сколько его в воздухе, которым мы дышим. В опытах с белыми мышами достаточно создать давление, равное шести-восьми атмосферам.

— А как же углекислый газ?

Он выдыхается в воду и растворяется в ней.

Должно соблюдаться и другое правило. Пресная вода для дыхания — смертельна. У животных, которые дышали такой водой, вдруг начиналось горловое кровотечение, и они гибли. Разгадка оказалась очень простой: вымывание солей из крови. Дыхательная смесь попадала в легкие. Легкие обладают разветвленной кровеносной системой. Соли из крови «перекочевывали» в пресную воду. Но обессоленная кровь — еще полбеды. Пресная вода легко проникает в легочные пузырьки, а оттуда — в кровеносные сосуды. Ясно, что такая «водянистая» кровь не может поддерживать нормальную жизнедеятельность организма. Вскоре отказываются служить и сами легкие: поглощение кислорода прекращается — и наступает смерть.

Но вернемся к эксперименту киевских Сальваторов.

Камера, где находилась мышь-акванавтка, была наполнена водой, напоминающей морскую.

Мышь вела себя спокойно.

Лишь на тридцать седьмой минуте ритмичные дыхательные движения животного несколько нарушились.

— Это еще не признак опасности. Не надо забывать, что на дыхание жидкостью требуется во много раз больше энергии: плотность воды в восемьсот раз превышает плотность воздуха! — поясняет один из экспериментаторов.

Между тем давление в аквариуме непрестанно возрастало. Крошечный сухопутный зверек превращался в обитателя морских бездн… Значит, разница между жабрами рыб и легкими млекопитающих, а стало быть и людей, не такая уж непроходимая пропасть!

Не следует забывать и того, что дальние предки человека некогда сами вышли из моря. Это случилось очень давно, много миллионов лет назад. Но мы до сих пор носим в себе следы этого происхождения. Плазма крови имеет тот же солевой состав, что и морская вода: в крови людей живет крохотная частичка моря…

Зоосад доктора Кильстры

Несколько раньше исследования в этой области начал голландский физиолог, профессор Лейденского университета доктор Иоганнес Кильстра.

Камеру наполовину заполняли жидкостью, а в оставшуюся верхнюю часть нагнетали сжатый воздух. Десять-пятнадцать часов жили там белые мыши. В одном из экспериментов Кильстры мыши находились в камере под давлением ста шестидесяти атмосфер! Маленькие, ничем не защищенные зверьки как бы побывали на глубине 1600 метров! А еще четверть века назад ни одна из подлодок с бронированным корпусом не поднялась бы и с глубины вдесятеро меньшей…

Можно вспомнить, что Линк тоже проводил опыты под давлением ста двадцати атмосфер. Однако подопечные Кильстры жили не в воздушной среде, а под водой.

— Трудно было поверить в возможность безболезненного переселения животного в совершенно чуждую ему среду, но в душе мы все же немножко надеялись, что непоправимого не произойдет… — рассказывали свидетели киевских экспериментов.

Как ни парадоксально, но роковым оказалось возвращение на твердую землю. Зверьки, благополучно прожившие под водой, все, как один, погибли, стоило им выйти из аквариума.

В экспериментах профессора Кильстры под водой жили не только белые мыши, но и собаки.

В одном из первых экспериментов Кильстры собака по возвращении «на землю» прожила целый месяц. В другом опыте собака дышала водой полчаса и осталась живой и невредимой, а в дальнейшем даже принесла здоровое потомство.

Значит, смерть все-таки подстерегает не всех!

По мнению экспериментаторов, весь секрет в том, что у крыс и мышей слишком миниатюрные органы дыхания, и, когда зверьки выходят на воздух, остатки воды, не успевая выйти, застревают в легких, и животные гибнут от удушья.

Некоторые эксперименты Кильстра проводил не в герметической камере, а в открытом аквариуме, положенном на дно барокамеры. Это упрощало дело.

Кильстра самокритично заметил, что методика его работы еще далека от совершенства. Доктор уверен, что в дальнейшем удастся продлить срок жизни животных в аквариуме до четырех недель без особого ущерба для их здоровья.

Несколько иначе ставил эксперименты американец Лампьер. Животные держались в станке. Никаких аквариумов. Собак, как аквалангистов, облачили в маски, только вместо сжатого воздуха через легкие циркулировал насыщенный кислородом физиологический раствор. В одном из опытов участвовали шестнадцать собак, выжили семеро.

Сможет ли человек дышать под водой подобным образом?

Пока таких попыток не было. Однако опыты Кильстры, Лампьера, советских исследователей дают основание надеяться, что в недалеком будущем спустится под воду без акваланга и человек.

— Года через два-три мы перейдем к опытам с добровольцами, — заявил Кильстра.

При работе человека на больших глубинах достаточно подать по шлангу кислород, и окружающая вода превратится в дыхательную смесь. Можно было бы заранее проложить по дну газопроводы с отверстиями для выпуска воздуха. Направление газопроводов можно легко менять. Для этого надо перенести шланги на новое место. Так возникнут своеобразные «трассы жизни».

Этот способ был бы совсем хорош, если бы не был столь расточителен. Ведь в легкие попадает лишь незначительная часть газа. Остальное пропадет в океане.

Как же быть?

При работах на дне, например, при обслуживании нефтяных скважин, можно воздвигнуть легкий купол. Тогда будет обогащаться только та вода, что находится внутри. При переходе на новое место океанавты приподнимают купол, переносят и ставят его куда надо. Никакого монтажа не требуется. Вся операция — ее смогут выполнить два-три человека — займет считанные минуты. При эвакуации купол поднимут на борт корабля.

Но, конечно, удобнее всего построить специальный «акваланг» или даже специальный скафандр с замкнутой циркуляцией воды, как в экспериментах Кильстры, Лампьера, Козака. Вода автоматически пропитывается кислородом и очищается от углекислого газа и от прочих вредных примесей.

Наверное, конструкторам уже сейчас надо подумать о создании таких аппаратов. Может быть, со временем появятся универсальные акваланги. Хочешь — дыши газовой смесью, переключи вентиль — и дыши водой… Поднявшись на поверхность и выдохнув из легких воду, океанавт вновь превращается в обыкновенного жителя земли.

«Водное дыхание» может пригодиться не только при покорении глубин и сверхглубин, но и в делах сугубо земных и даже космических.

Высказана также идея, что дыхание водой в некоторых случаях может спасти жизнь преждевременно родившихся детей. В особой купели, подобной аквариумам Кильстры, создадут условия, переходные от жизни плода во чреве матери к жизни новорожденного на воздухе. И конечно же, «водное дыхание» будет помогать в спасении утопающих. Возвратить им жизнь пока удается далеко не всегда. Кильстра в этом случае рекомендует следующий рецепт «живой» воды: на один литр жидкости добавлять девять граммов солевой смеси и кислород.

Космическим путешественникам ванна с водяным дыханием облегчит недомогания, возникающие при перегрузках, неизбежных при взлете и посадке звездолетов.

Приоритет изобретения

Вот что рассказывал один из участников пресс-конференции, организованной в аудитории исследовательного центра американской фирмы «Дженерал электрик»:

— Герой дня, ради которого собрались журналисты, никому так и не дал интервью. Он оставался нем, словно рыбы, которые плавали вокруг него. Красивые юркие скалярии и гурами сновали туда-сюда, поглядывая на какое-то странное четвероногое существо, забравшееся в самую середину аквариума. Отделенное от рыб прозрачными стенками ящика, животное преспокойно грызло лист салата, не обращая внимания ни на любопытных рыбешек, ни на яркие вспышки фоторепортерских «блицев». Но это молчаливое спокойствие красноречиво говорило само за себя. Еще бы!.. Наш маленький хомяк вот уже который час чувствовал себя как ни в чем не бывало! Очевидно, ему вполне хватало кислорода для дыхания, хотя нигде не было видно трубок, через которые воздух в ящике мог бы освежаться. Зверька не душил и избыток углекислого газа, хотя поглотителей тоже не видно. Ловкий трюк фокусника? Нет, об обмане не могло быть и речи: новую установку демонстрировали журналистам серьезные ученые. Тогда что это?

Внимательные зрители уже давно приметили, что две стенки и крышка подводной клетки со зверьком сделаны не из стекла или плексигласа, а из тончайшего гибкого материала — особой пленки, изобретенной Вальтером Роббом. Он демонстрирует этот опыт. Каждая сторона подводного домика — из шести слоев общей толщиной 0,15 миллиметра.

Эта пленка извлекает кислород из воды. Стенки-мембраны маленького подводного домика добывали столько живительного газа, что его хватило бы и для более крупного зверька, чем хомяк. Убыль кислорода, «сгорающего» в организме животного, непрестанно восполняется притоком свежего газа из окружающей воды. Надо только, чтобы давление внутри домика было меньше, чем снаружи. Кислород без труда «протискивается» сквозь мембраны, направляясь из области более высокого давления туда, где давление ниже. Замечательно, что углекислый газ при этом направляется в обратную сторону: автоматически проходит сквозь стенки и растворяется в воде…

Наводнение зверьку не грозит. Небольшое количество отфильтрованной и опресненной воды, которое все-таки проникает в домик, не приносит хлопот. Она используется для питья. Пленка задерживает и соли, содержащиеся в морской воде.

Что же это за чудесная пленка? Она не имеет пор в обычном смысле слова, как губка или микропористая резина. Перед нами скорее молекулярное сито. Его сверхузкие отверстия тесны для молекул воды. Они в пору лишь молекулам кислорода и углекислого газа.

«Волшебная» пленка Робба пригодится не только океанавтам — обитателям подводных обсерваторий на дне моря.

Отдавая дань справедливости, следует признать, однако, что чудесный дом Вальтера Робба, где жил зверек, не был таким уж откровением для науки. Еще лет десять назад «дышащую» пленку начала выпускать английская фирма «Транспарент пэйпер». Она рекламировалась как великолепный материал для упаковки фруктов, овощей, мяса. Продукты, хранящиеся в такой таре, непрерывно получают добавки кислорода, углекислый газ удаляется — происходит постоянный газообмен.

Но еще раньше — много-много раньше — это изобретение было сделано нашим старым знакомцем — пауком серебрянкой. Он живет в подводном домике из воздушного пузыря, стенки которого та же дышащая пленка. Они, как жабры, извлекают кислород из воды. Одного только воздуха, запасенного серебрянкой с поверхности, хватило бы ненадолго.

Загадочный образ жизни серебрянки, его уникальная хижина давно интриговали воображение ученых. Около полувека назад за серебрянкой наблюдал немецкий естествоиспытатель доктор Брюгер. Он считал водяной домик паука одним из самых универсальных приборов, которые когда-либо сотворяла природа.

О серебрянке, не скрывая своего изумления, писал несколько десятилетий тому назад… автор «Синей птицы» — Метерлинк:

«Правда, давление, которому подвергаются пауки и люди, не одинаково. К тому же наши легкие поглощают значительно больше кислорода и больше выдыхают углекислого газа. Да и дыхательные системы у нас разные. Но удивительно то, что приспособление ничтожного паука вызывает так много вопросов…»

Метерлинк еще тогда призывал разгадать секреты серебрянки с ее удивительным подводным домом и обратить эти знания на пользу людям.

Отличными подводными пловцами считаются многие другие насекомые. Это легко заметить, сидя в ясный день на берегу обычного пруда: то там, то здесь быстро движутся из стороны в сторону маленькие шарики воздуха. На самом деле это живые существа. Воздух застрял в волосках на их теле. У других устроено еще более хитро — воздух застревает под крылышками. Когда насекомые ныряют, такой пузырек, как акваланг, снабжает их воздухом. Но самое важное — сквозь воздушную пленку из воды начинает процеживаться кислород. Правда, кислород расходуется быстрее, чем добывается. Поэтому рано или поздно воздушный шарик опадает и уже не вбирает кислород…

Пленка, идею которой подсказала серебрянка, поможет обитателям подводных домов и подводных лодок — она будет снабжать их кислородом и пресной водой.

Но еще б?льшую помощь подводным жителям, возможно, окажет… пресноводная одноклеточная водоросль хлорелла. Каждый из вас, конечно, не раз видел, как «цветут» стоячие пруды и озера. Это дает о себе знать хлорелла.

В последние годы хлореллу изучают десятки научных институтов и лабораторий во многих странах мира. Дело в том, что это простейшее растение является настоящей фабрикой питательных веществ. Оно вырабатывает почти все аминокислоты, столь необходимые для жизни человека, белки, жиры, различные витамины.

Не удивительно, что ученые рассматривают хлореллу как возможный источник питания для космонавтов в будущих межпланетных полетах. О создании космических оранжерей мечтал еще К. Э. Циолковский, и хлорелла самая подходящая для них кандидатура. Но сегодня эта водоросль уже не раз поднималась в космос, и, как говорится, она вполне оправдала оказанное доверие. И в космических условиях растение, оставаясь весьма неприхотливым, давало большие урожаи.

Но для океанавтов, пожалуй, самым ценным качеством хлореллы является ее исключительная способность выделять большое количество кислорода. Водоросль «выдыхает» столько кислорода, что объем его в двести раз превышает ее собственный объем.

Однажды ученые поставили такой опыт. В герметическую камеру, куда предварительно поместили хлореллу, была посажена белая мышь. В такой обстановке мышь прожила шестьдесят шесть дней. Она могла пробыть там и больше, но выпила всю воду, и опыт пришлось прекратить. Количество же кислорода в камере, несмотря на то, что там жила мышь, увеличилось за это время с двадцати одного до шестидесяти трех процентов.

А недавно подобный эксперимент был проведен с участием человека. Сотрудница одного сибирского института — Галина М. — прожила целый месяц в изолированной кабине. Кислород для дыхания человека поставляла хлорелла.

Миллиарды клеток этой водоросли поглощали углекислый газ, выделяемый при дыхании, и в процессе фотосинтеза превращали его в кислород. Никаких других источников снабжения воздухом и аппаратов для его очистки не было.

Хлорелла прекрасно справлялась со своими обязанностями, и Галина за все тридцать дней ни разу не испытывала недостатка в кислороде. Отличное самочувствие подтвердили и показания медицинских приборов, установленных в ее «отдельной квартире». Водоросль чутко реагировала на поведение человека, и если Галина засыпала, то и хлорелла тоже замедляла ритм своей жизни…

Оранжерея, в которой росла водоросль, напоминала собой тщательно закрытый фонарь, в котором горела мощная ксеноновая лампа. Стенки оранжереи, зеркальные с внутренней стороны, почти не пропускали наружу свет — энергию, необходимую для фотосинтеза.

«Грядка» с хлореллой — пачка тонких кювет из оргстекла, расположенных через каждые пять миллиметров. Оранжерея с кюветами общей площадью восемь квадратных метров, где находилось всего полкилограмма хлореллы, вырабатывала кислорода, которого вполне хватало для одного человека.

Успешное завершение сибирского эксперимента открывает хлорелле «зеленую улицу» и в космические дали и в просторы гидрокосмоса. Океанавты, очевидно, смогут использовать кислород, вырабатываемый хлореллой, не только в помещении, но, быть может, и заряжать им свои акваланги. Быть может, в самом недалеком будущем чудесные водоросли избавят экипаж автономных домов под водой и от части громоздких стальных баллонов с газовой смесью и от дорогостоящей аппаратуры по очистке воздуха.

Вальдемар Эйрес — человек с жабрами

Но вернемся к воздушным мембранам Вальтера Робба, которые позволяют черпать кислород для дыхания непосредственно из воды. Для этого, считает Робб, достаточно иметь всего два — два с половиной квадратных метра пленки, которая будет отгораживать пространство, заполненное воздухом, от окружающей воды. Конечно, еще немало придется поработать, прежде чем будут созданы надежные подводные домики с такой мембраной.

Во всяком случае, первые искусственные жабры уже созданы! Их изобрел инженер Вальдемар Эйрес из США. Рассказывают, будто ему пришлось с головой залезть под воду, чтобы развеять опасения недоверчивых экспертов патентной службы.

Около десяти лет, независимо от Вальтера Робба, трудился Эйрес над воплощением своей мечты. Изучал работу жабр и механику дыхания рыб, подыскивал подходящие материалы, провел сотни опытов, строил одну модель за другой, выходил на испытания в море…

Что же представляют собой искусственные жабры Вальдемара Эйреса? Этот аппарат действует по тому же принципу, что и продемонстрированная Роббом подводная клетка со зверьком. Поглощает из окружающей воды кислород и отдает отработанные газы. Лицо «человеко-рыбы» защищено маской. «Жабры» и маска соединены шлангом. У побережья одного из нью-йоркских пляжей Эйрес проплавал под водой в течение целого часа!.. Правда, почти у самой поверхности.

Пока еще слишком рано судить о реальных возможностях и надежности таких «жабер». Может быть, самое лучшее — создать комбинированные «легкие-жабры» и к добытому из воды кислороду в случае чего добавлять то или иное количество газового коктейля или сжатого воздуха из баллонов. А то и вовсе, когда надо, переходить с жаберного дыхания на легочное или наоборот. Особенно при работе на больших глубинах, где чистый кислород опасен, становится ядовитым.

Кашалот дает идею

Морякам хорошо известно, что у китов некоторых видов мышцы не красные, как у прочих млекопитающих, а почти черные. Оказалось, что кит запасает воздух не только в легких, но и во всех мышцах своего тела. Точнее, в самих легких скапливается воздух, а в мышцах — только чистый кислород.

В китовых мышцах содержится огромное количество дыхательного пигмента миоглобина. Он-то и придает им черный цвет. Кислород связывается в молекулах миоглобина и по мере надобности поступает во все органы животного. Что касается углекислого газа, выделяющегося в процессе дыхания, то он до поры до времени — пока кит плавает под водой — «консервируется» в крови, не попадая в мозговые центры.

Исполины океана — киты изучаются ныне учеными очень настойчиво. Нельзя сказать, что уже полностью известно, почему могут они так долго путешествовать под водой. Однако исследователи называют ряд причин. Первое — это безотказная система мощных регуляторов и клапанов, препятствующих выжиманию воздуха из легких, как бы глубоко ни нырнул кит. После такого нырка отработанный воздух, который выдыхает животное, почти лишен кислорода.

Но, пожалуй, самое изумительное, поистине «фантастическое» свойство кита — это умение запасать кислород в мышцах. Особенно замечательны в этом отношении зубатые киты, например кашалоты.

Когда кашалот показывается на поверхности, шумное дыхание его слышно за сотни метров. Это он вентилирует свои легкие. Не только в старину, но даже совсем недавно, когда еще не было гидролокаторов, «сопенье» кашалотов, как надежный ориентир, помогало китобоям выслеживать добычу в темноте и в тумане.

Кит делает пятнадцать-двадцать глубоких «затяжек» свежим морским воздухом, вдыхая зараз до десяти тысяч литров воздуха, и одновременно выдыхает скопившиеся в легких и крови продукты распада — углекислый газ и водяные пары.

Кислород, когда кит дышит атмосферным воздухом, накапливается не только в легких и в мышцах, но и в крови животного. Миоглобин «запасает» живительный газ, а по мере надобности отдает его работающим органам. И чем больше миоглобина содержится в тканях, чем тщательнее продуты легкие, тем оказываются богаче кислородом мускульные «закрома» и тем длительнее путешествие под водой совершает кит.

Может ли кашалот помочь людям проникнуть в подводный мир?

Вот что говорят о чудесных способностях китов и о возможности глубоководных погружений человека без каких-либо аппаратов советские ученые.

— Как создать в организме человека условия, близкие к китовым? Здесь нам придется вступить в область научных прогнозов, — высказывает свое мнение инженер В. Волков.

Прежде всего необходимо сохранить воздух в легких. Не дать глубинам сжать грудную клетку. В принципе это осуществимо при помощи устройств, напоминающих легочный автомат акваланга, которые можно вмонтировать, ну хотя бы в специальную маску. Вторая проблема — это такое насыщение организма кислородом, которое обеспечило бы бесперебойную работу внутренних органов в течение длительного времени.

Так что научная идея создания в человеческом организме условий для долговременного пребывания на больших глубинах уже существует… Биологам предстоит решить важнейшие задачи: понизить чувствительность дыхательного центра в мозгу к накапливающейся в процессе работы организма углекислоте или же найти способы, позволяющие улучшить ее выведение из организма; кроме того, еще неясно, как решать проблему быстрого погружения и всплытия. В общем дел предстоит еще немало. Наука сегодняшнего дня вступила лишь в первое соприкосновение с замечательной и многообещающей тайной природы…

— Представьте себе, — продолжают ученые-«кашалотоведы» Сергей Клейненберг, Всеволод Белькович и Алексей Яблоков, — что вы находитесь на берегу моря лет этак через десять-пятнадцать. Вот к воде подходит человек и, проглотив какие-то таблетки и запив их чем-то из стакана, начинает размеренно дышать. За его плечами нет акваланга, только на лицо надета маска. Через несколько минут он погружается в море. Проходит пять, десять, пятнадцать минут — его все нет. Наконец, когда вы уже теряете терпение и поглядываете, не бежать ли за помощью, чтобы вытаскивать утонувшего, человек выходит из воды и ложится отдохнуть на песок.

Фантазия? Сегодня — да, но завтра — реальность! В самом деле, создание веществ, способных помочь нашим тканям запасать кислород из воздуха в несколько большем количестве, чем это происходит обычно, вещь вполне допустимая и возможная.

Но способность аккумулировать газ в организме была отлично известна еще за несколько десятилетий до того, как люди разгадали тайну зубатых китов. Какое же существо, подобно кашалоту, могло устраивать в живых тканях склады газа? Это… сам человек.

К сожалению, человек пока что мало выиграл от этой в общем-то замечательной способности. Азот, растворенный в живых тканях, при быстром уменьшении давления снова становится свободным газом, угрожая кессонной болезнью.

Интересно, что, кроме китов, кислород в мышцах «откладывают» и другие млекопитающие — обитатели моря, а также морские черепахи и даже обыкновенные водоплавающие птицы — дикие гуси и утки. Охотясь под водой, они вынуждены надолго задерживать дыхание. Мясо этих птиц из-за обилия миоглобина довольно темное, хотя и не такое, как у китов. Да и сам миоглобин их отличен от миоглобина морских гигантов. Это и понятно: дыхательный пигмент китов связывает значительно больше кислорода.

Отталкивающий вид, специфический запах и привкус, а кроме того, жесткость — все это до недавнего времени совершенно обесценивало китовое мясо. Охотников привлекал знаменитый китовый жир. Мясо морских исполинов считалось несъедобным и при разделке туш его попросту выбрасывали за борт. Позднее горы китового мяса начали перерабатывать на корм домашнему скоту. А недавно люди включили его и в свой рацион. По мнению одесских ученых из Украинского научно-исследовательского института консервной промышленности, китовое мясо не хуже говядины. Весь секрет в том, как его приготовить. На помощь пришла химия. Если к китовому мясу добавить некоторое количество ортофосфата и соевой муки, исчезнет специфический запах и мясо становится мягким. Вкус улучшают и небольшие добавки глютаминнатрия. Чтобы избавиться от неприятного цвета, мясо подвергают своего рода химчистке — отбеливанию. В институте разработано более десятка различных видов китовых консервов. Вы еще не пробовали их? Обязательно попробуйте, не пожалеете.

Дыхание… без кислорода

И все же было трудно примириться с мыслью, что кашалоты, так долго плавая под водой — отдельные «рекордсмены» — по часу-полтора, — довольствуются лишь тем кислородом, который они припасают в крови и мышцах, усердно вентилируя свои легкие.

— Не имеют ли кашалоты какой-либо дополнительный источник энергии? — задали себе вопрос китологи.

Оказалось, да. Многочисленные опыты и долгие наблюдения позволили сделать такой вывод:

— У китов есть еще один источник энергии — бескислородное, или анаэробное, окисление. Главным источником энергии служат углеводы. Энергия получается за счет их распада на простые соединения. Процесс окисления очень сложен. Первая фаза может идти без участия кислорода. На глубине при задержке дыхания рано или поздно должен наступить момент, когда запасы кислорода в мышцах, в крови и в легких будут израсходованы. Тогда и вступает в действие бескислородное дыхание, говорят ученые. Пища, которую добывает кит, сразу же начинает с огромной скоростью перевариваться и растворяться желудочными соками. Питательный раствор немедленно всасывается стенками кишечника. Кровь разносит эту подкормку — огромное количество глюкозы и других питательных веществ — по всем мышцам, по всему организму. Так высококалорийное питание в глубинах моря заменяет дыхание. И чем больше трофеев — кальмаров и рыбы добудет кашалот, охотясь в глубинах, тем дольше сможет он пробыть под водой, не возобновляя запасов кислорода.

О происходящем анаэробном окислении свидетельствовало резко увеличенное количество молочной кислоты — одного из продуктов этого процесса, обнаруженное в крови только что вынырнувших животных.

Избыток молочной кислоты был найден не только в крови китов, но, кроме того, в организме других ныряющих животных — тюленей, аллигаторов, диких уток.

Но вот английский физиолог Шолландер, наблюдая за профессиональными ныряльщиками — ловцами жемчуга, обнаружил и у них в крови повышенное содержание молочной кислоты. Значит, бескислородное дыхание присуще и человеку! Как оказалось, анаэробное окисление происходит у людей даже на суше, например у штангистов, у спринтеров, когда организм испытывает большие физические нагрузки.

— Возможно, что сходство в процессе дыхания ныряющих животных и человека окажется значительно больше, чем мы представляли до сих пор, — комментируют эти факты инженер В. Голованов и биолог А. Яблоков.

— Создание специальных питательных составов, позволяющих использовать дополнительные энергетические ресурсы бескислородного дыхания, тоже вполне реальная вещь, — развивают эту мысль Сергей Клейненберг, Всеволод Белькович и Алексей Яблоков.

Чтобы проверить свое предположение, ученые провели серию опытов, участниками которых стали группа аквалангистов московского клуба «Дельфин» и подводники Московского нефтяного института.

— В наших экспериментах роль кашалотов исполняли пловцы, а роль кальмаров — виноградный сок с глюкозой. И вот в ряде случаев достоверно увеличивалась продолжительность нырков и длина заплыва под водой… Но ведь это только начало!

Исследователи экспериментально установили еще один интересный факт: под водой сердце ныряльщиков бьется заметно медленнее. Этот эффект — брадикардия — характерен для многих водных и полуводных животных. Но, оказывается, он свойствен и человеку. Эта особенность организма также может сослужить хорошую службу будущему «гомо сапиенс акватикус», говорят ученые, раз у всех ныряющих животных брадикардия выражена исключительно хорошо.

Тем временем — очевидно, сами того не подозревая, что это может вызвать интерес у «человеко-рыб», — проводят свои исследования украинские ученые. Правда, их эксперименты касались отнюдь не анаэробного дыхания. Как раз наоборот.

Украинцы изобрели жидкий кислородный коктейль, который, возможно, в известной степени предвосхищает те самые чудо-пилюли, о которых мечтательно высказались Клейненберг, Белькович и Яблоков.

Начало этой истории такое. Несколько лет назад действительный член Академии наук Украинской ССР Н. Н. Сиротин применил кислородную терапию внутренних органов, газируя кислородом различные фруктовые соки, молоко и другие напитки. Эти опыты проводились в клинических условиях. Кислородная терапия хорошо помогала людям, страдающим теми или иными заболеваниями внутренних органов.

Эту оригинальную идею развили сотрудники Киевского института клинической медицины. Они использовали и другие пищевые продукты, которые, как губка, впитывали кислород и долго удерживали его в организме человека. Кислород постепенно высвобождался из выпитого коктейля и поступал в кровь.

Замечательно зарекомендовал себя кислородный коктейль, приготовленный из белка куриного яйца. Растворенный в воде и газированный кислородом, он превращался в пену из несчетного множества стойких крошечных пузырьков, заполненных кислородом.

Медики не переставали радоваться: результаты лечения кислородным коктейлем превзошли все ожидания…

— Наш кислородный коктейль тонизирует весь организм, противопоказаний практически не имеет. Он весьма полезен и спортсменам. Коктейль незаменим, когда в силу естественных условий организм человека испытывает недостаток кислорода, например в высокогорных условиях, — заявили они.

Рекомендуя свой коктейль, киевские медики не упоминают подводного плавания.

Не попробовать ли специалистам по подводной физиологии самим продолжить эксперименты, начатые украинцами?

Вообще говоря, попытки насыщать организм человека кислородом перед погружением хорошо известны. Даже простое вдыхание чистого кислорода в течение нескольких минут дает возможность заметно увеличить время пребывания ныряльщика под водой. Вентиляция легких кислородом увеличивает задержку дыхания до пяти-десяти, а то и до пятнадцати минут! На очереди, уверенно говорят ученые, разработка специальных фармацевтических препаратов, позволяющих запасать в организме подводника такое количество кислорода, которое обеспечит работу мышц на многие десятки минут.

Что касается кислородного коктейля, изобретенного медиками, то его приготовление очень несложно. Требуется лишь специальный стальной сифон. Вместо него можно использовать так называемый аппарат Боброва — стеклянную колбу с двумя трубками, вставленными в плотно закрывающуюся пробку. В колбу заливают свежий белок или сладкий сироп. Через одну трубку подается кислород — из баллона с редуктором или даже из обыкновенной кислородной подушки. Газ вспенивает жидкость в колбе и вместе с ней поступает во вторую трубку, которую подносят ко рту.

Двести граммов этого напитка содержат до тысячи миллилитров кислорода. Газ резервируется в желудке, а затем постепенно переходит в кровь…

Как видим, кислородный коктейль и глубоководные завтраки кашалота имеют одинаковый эффект — снабжают организм дополнительной энергией.

Пилюли или скальпель?

Раскроем еще одну тайну зубатых китов. 14 августа 1884 года лондонская газета «Таймс» опубликовала сообщение о нападении кашалота на подводный кабель. Затем последовали новые вести о схватках китов с телеграфными «змеями». Возможно, кашалоты принимали их за щупальца своих старых врагов — гигантских кальмаров и, недолго думая, кидались в атаку. Однако не сами эти сравнения приковали к себе внимание ученых. Дело в том, что кабели прокладываются на очень больших глубинах. В 1955 году при инспектировании подводной телеграфной связи подняли кабель, лежавший на глубине 1200 метров. Вместе с кабелем на поверхность подняли полуразложившийся труп кашалота. Еще более поразительная находка — кашалот, запутавшийся в витках кабеля, — обнаружена четырьмя годами ранее при ремонте участка подводной телеграфной связи между Лиссабоном и Малагой. Труп кита подняли с глубины 2200 метров. Как могли проникнуть сюда гигантские животные? Этот факт поверг ученых в изумление.

Зависть подводников, однако, вызывает не только глубина, на которую могут нырять киты (и ластоногие — дельфины, тюлени), но и быстрота, особенно при всплытии, с которой они это делают. Охотясь за осьминогами и кальмарами, кашалоты преодолевают тысячеметровую глубину со скоростью тринадцати километров в час.

Но, даже имея в своем распоряжении таблетки, о которых говорят Клейненберг, Белькович, Яблоков, сможет ли человек, подобно кашалоту, погружаться на такие же гигантские глубины или он окажется способен плавать под водой всего в нескольких десятках метров от поверхности?

— Акваланг — примитивное средство, недостойное современного уровня науки, — сказал как-то его изобретатель.

Кусто предполагает, что «гомо акватикус» грядущего станет обладателем миниатюрных дыхательных аппаратов, вживленных в тело. Эти небольшие, но безупречно действующие искусственные жабры вводят кислород непосредственно в кровь, минуя легкие. Шланги такого прибора подключаются прямо к аортам. Что касается легких, то они, как и полости костей, заполняются нейтральной несжимаемой жидкостью или пластиком, а нервные дыхательные центры временно заторможены, как у кашалотов. Тогда люди научатся нырять в глубь океана на 1000–2000 метров!

Итак, Кусто склонен верить в хирургический вариант превращения жителя земли, сухопутного с «сотворения мира», в человека-амфибию, подобного беляевскому Ихтиандру.

Эта идея вызвала ожесточенные споры. Многие отрицали и возможность и допустимость с моральной точки зрения столь смелого вмешательства в организм человека.

Слов нет, подобная операция очень сложна и пока недоступна современной науке. К тому же медикам и без того хватает дел на Земле…

Но окинем взором высоты, достигнутые медициной и, в частности, хирургией за последние годы. Реанимация — оживление после клинической смерти, поистине чудодейственное возвращение с того света! Захватывающие дух операции на сердце. Пересадки действующих органов, включая отдельные участки коры головного мозга. Ученые уверены: в скором времени — что-то между 1975 и 1990 годами — будет осуществлена пересадка и приживление биоэлектронных пластмассовых протезов — имитаторов живых органов, подключаемых к нервной системе человека…

Так что едва ли правы те, кто сейчас бездумно отбрасывает предположение Кусто. Возможно, когда-нибудь подобная операция и в самом деле окажется по плечу любой хирургической клинике. Не будет недостатка и в добровольцах «перековаться». Конечно, нет смысла подвергать себя подобной переделке просто так, из любопытства. Но океанавтам — обитателям подводных обсерваторий и рудников на дне моря, ученым-мореведам и подводным археологам — такая операция оказалась бы очень полезной.

Свою идею Кусто высказал лет пять назад. Сейчас ученые — физиологи и конструкторы — переходят от слов к чертежам и экспериментам. Изобретение Эйреса — лишь одна из первых ласточек, знаменующих появление людей новой «расы» — Гомо акватикус.

А вот еще один обнадеживающий эксперимент. Его провели недавно сотрудники Вестминстерского госпиталя в Лондоне С. Фельдман, Дж. Хойл и Дж. Блэкберн. Их опыт как бы перекидывает мост между гипотезой Кусто и реальностью.

Экспериментаторы вводили кислород непосредственно в кровеносные сосуды животных, полностью отключив легочное дыхание. Самое любопытное, что при этом использовался не чистый кислород, а перекись водорода, которая впрыскивалась в аорту. Обогащенная артериальная кровь поступала во все органы животного. При этом перекись водорода постепенно разлагалась на воду и кислород.

Решающее значение в этом эксперименте имеет дозировка и скорость подачи перекиси водорода. При излишке ее в организме высвобождается слишком много кислорода, который не успевает ни раствориться в крови, ни прикрепиться к «вакантному» гемоглобину, и тогда в кровеносных сосудах могут образоваться пузырьки газа, как при кессонной болезни. Чтобы этого не произошло, необходимо тщательно рассчитать нужный для «дыхания» запас вещества.

Английские физиологи ежеминутно впрыскивали в аорту кошки один кубический сантиметр перекиси водорода. Этого оказалось достаточно, чтобы животное могло полностью «выключить» свои легкие и дышать газовой смесью, искусственно введенной в организм…

* * *

В октябре 1964 года в Геную, на родину Христофора Колумба, съехались со всех концов света делегаты. Они собрались на Генеральную ассамблею Всемирной федерации подводной деятельности.

Через несколько дней участники ассамблеи покинули зал заседаний и в сопровождении корреспондентов поднялись на борт корабля «Торрегранд». Прогромыхали якоря, и судно вышло в открытое море.

Президент Всемирной федерации Жак-Ив Кусто торжественно огласил «Декларацию о взятии власти над глубинами моря».

Затем свиток с текстом «Декларации» заключили в бронзовый сосуд, украшенный эмблемой Всемирной федерации и вымпелами стран — участниц Федерации подводной деятельности. Звучит команда, и капсула с легким всплеском скрывается в безднах моря…

Этот день, 12 октября 1964 года, Всемирная федерация объявила первым днем первого года Подводной эры. Чтобы увековечить начало Подводной эры, было решено установить бронзовый монумент на дне Средиземного моря. Это будет первый в мире подводный памятник — в честь пионеров морских глубин.

— Итак, мы вступили в новую эру — эру гидрокосмоса, — сказал Кусто. — Настал золотой век подводных исследований. Он откроет человечеству всю красоту и богатство нашей планеты, большая часть которой, скрытая под водой, так долго была недоступна людям.