Научно-исследовательские подводные лодки

We use cookies. Read the Privacy and Cookie Policy

Научно-исследовательские подводные лодки

Идея использования подводных лодок для изучения глубин океанов и морей зародилась у ученых давно. Действительно, подводные лодки могут удаляться от баз на большие расстояния и находиться длительное время под водой, проводя исследования как при хороших, так и при неблагоприятных гидрометеорологических условиях (шторм, ледовый покров), когда использование надводных судов затруднено, а иногда и невозможно.

Кроме того, на подводных лодках может быть размещен более обширный комплекс научно-исследовательской аппаратуры, чем. на небольших подводных камерах.

Естественно, подводные лодки с атомными энергетическими установками дают еще более широкие возможности для проведения исследований, чем обычные дизель-электрические. Практически они могут неограниченное время находиться под водой и проходить десятки тысяч миль без пополнения запасов горючего.

Об огромных возможностях атомных подводных лодок ярко свидетельствует поход советской атомной подводной лодки «Ленинский комсомол» подо льдами Северного полюса.

Научно-исследовательская подводная лодка «Наутилус». В 1931 г. американский исследователь Хьюберт Уилкинс сделал первую попытку использовать подводную лодку в научно-исследовательских целях для плавания подо льдами Арктики к Северному полюсу. Его подводная лодка «Наутилус» была переоборудована из старой боевой американской подводной лодки. В экспедиции X. Уилкинса принял участие известный норвежский океанограф Харальд Свердруп.

19 августа 1931 г. «Наутилус» вошел в паковые льды. При осмотре корпуса лодки экипаж обнаружил, что льдом срезаны кормовые горизонтальные рули, а погружаться без них было немыслимо. Все попытки Уилкинса и Свердрупа пробиться через льды в подводном положении ни к чему не привели; «Наутилус» возвратился в Норвегию.

Так закончилась первая попытка использовать подводную лодку для научных исследований. Только спустя 26 лет мечта многих поколений исследователей глубин была осуществлена в нашей стране, когда Советское правительство приняло решение о переоборудовании одной из новых боевых подводных лодок Северного флота в подводную научно-исследовательскую лабораторию.

Научно-исследовательская подводная лодка «Северянка» была создана по инициативе Всесоюзного научно-исследовательского института рыбного хозяйства и океанографии (рис. 24).

Рис. 24. «Северянка» выходит в море.

Проблема увеличения улова рыбы, неразрывно связанная с определением районов нереста, откорма и скопления рыб, с изучением поведения рыб в различные времена года и суток, а также с возможностями создания новых методов и средств лова, — вот что интересовало наших ученых в первую очередь.

14 декабря 1958 г. «Северянка» вышла в свой первый поход.

Подводная лодка состоит из двух корпусов: наружного— легкого и внутреннего — прочного, рассчитанного на большую глубину погружения (рис. 25).

Рис. 25. Продольный разрез подводной лодки «Северянка»-1 — телевизионная камера с прожектором; 2—верхний эхолот; 3 — койки, 4 — второй отсек; 5 — рубка; 6—ходовой мостик; 7— четвертый отсек; 8 — камбуз; 9 — шестой отсек; 10— седьмой отсек; 11 — пятый отсек; 12—аккумуляторная батарея; 13 — центральный пост; 14 — аккумуляторная батарея; 15—устройство для взятия проб грунта; 16 —первый (научный) отсек; 17 — нижний эхолот, 18 — гидролокатор.

Между легким и прочным корпусами располагаются цистерны главного балласта. Заполненные водой во время погружения, они придают подводной лодке плавучесть, близкую к нулевой.

Прочный корпус «Северянки» разделен поперечными переборками на семь отсеков, сообщающихся между собой герметически закрывающимися дверями. Собственно исследовательским отсеком является первый отсек, где размещены основные приборы, устройства и механизмы для научной работы. Для зрительного наблюдения за подводным миром и производства фото- и киносъемок с каждого борта этого отсека и на его подволоке имеется по одному иллюминатору, освещающемуся снаружи мощными прожекторами (рис. 26).

Рис. 26. Киносъемка подводного мира через верхний иллюминатор «Северянки».

При включенных прожекторах через иллюминаторы можно увидеть рыбу на расстоянии до 15 м, однако при плавании лодки в мутной воде прожекторы дальности видимости не увеличивают, и поэтому с правого борта первого отсека установлена четырехметровая откидывающаяся стрела со светильником мощностью 1000 вт.

В носу лодки расположена камера подводного телевизора, освещающаяся собственным прожектором. В носовой части установлен гидролокатор, который посылает сигналы в горизонтальной плоскости и дает возможность обнаруживать косяки рыб на большом расстоянии. Для этой же цели служат и эхолоты, посылающие сигналы вверх и вниз.

В первом отсеке размещены термосолемер для определения температуры и солености воды, фотометр для определения освещенности среды, измерители подводных течений, содержания растворенного в морской воде кислорода, видимости предметов под водой, радиоактивности воды и многие другие приборы. На подводной лодке имеются устройства для взятия проб забортной воды и грунта.

В нижней части второго и четвертого отсеков «Северянки» размещены источники электроэнергии — кислотные аккумуляторы; верхняя часть этих отсеков используется как жилые помещения для экипажа. Во втором отсеке находятся также радиорубка и каюта командира, а в четвертом отсеке камбуз с электрической плитой. Здесь же расположен компрессор для пополнения баллонов сжатым воздухом высокого давления, который необходим для продувания цистерн главного балласта при всплытии, для запуска двигателей надводного хода и работы многих механизмов, устройств и систем подводной лодки.

Управление подводной лодкой осуществляется из центрального поста, которым является третий отсек. Тут определяют курс и скорость корабля, отсюда руководят его погружением и всплытием, управляют горизонтальными и вертикальным рулями.

В пятом отсеке расположены двигатели надводного хода — два мощных дизеля и обслуживающие их механизмы.

Двигатели подводного хода — электромоторы, питающиеся от аккумуляторных батарей, находятся в шестом отсеке. В этом же отсеке с линиями валов соединены менее мощные электромоторы экономического хода, которые обеспечивают движение лодки под водой с малой скоростью, но в течение длительного времени.

В седьмом отсеке размещены вспомогательные механизмы.

За первые шесть экспедиций (три в Баренцево море и три в Северную Атлантику) «Северянка» находилась в плавании 118 дней, прошла свыше 14,5 тысяч миль, произвела 130 специальных погружений на глубины от 70 до 170 м. Ее вклад в решение важнейшей задачи увеличения добычи рыбы очень велик. Многие загадки морских глубин, интересующие рыбаков и ученых, решены, многие ждут своего разрешения с помощью первой исследовательской подводной лодки «Северянка».

Советские ученые и конструкторы накопили немалый опыт использования подводной лодки в научно-исследовательских целях и ныне думают о создании более совершенной научно-исследовательской подводной лодки. Какой же она должна быть, по их мнению?

Полагают, научно-исследовательская подводная лодка должна совмещать в себе и некоторые функции надводного судна, чтобы в надводном положении с нее можно было спускать трал, брать пробы грунта и планктона, вылавливать рыб и морских животных. Глубина погружения новой подводной лаборатории достигнет 600 м. Для того чтобы человек побывал на еще больших глубинах, с лодки, находящейся в подводном положении, можно будет спускать гидростат. Иллюминаторы в отсеках лодки позволят видеть широкую панораму подводного мира, а устройства, аналогичные перископу, создадут лучшие условия для наблюдения из разных отсеков за движущимися в воде предметами и морским дном. Мощные прожекторы осветят воду в районе иллюминаторов; совершенные гидроакустические приборы позволят обнаруживать на больших расстояниях косяки рыб и преграды, быстро и точно определять дистанцию до грунта и до поверхности воды. Установка шлюзовой камеры обеспечит выход и возвращение внутрь лодки членов ее экипажа с аквалангами.

Подводная лодка будет оснащена новейшей научно-исследовательской аппаратурой. На ней сможет отправиться в дальние экспедиции большее число научных работников.

Научно-исследовательская подводная лодка ГА-2000, спроектированная коллективом общественного конструкторского бюро Государственного проектного института рыбопромыслового флота, рассчитана на глубину погружения 2000 м, дальность плавания 50 миль и автономность 24 ч (рис. 27).

Рис. 27. Внешний вид подводной лодки ГА-2000.

Ее главные размерения: длина 6,5 м, ширина 1,8 м, высота 3,0 м. Размеры прочного стального корпуса: длина 4,5 м, диаметр 1,5 м.

В соответствии с проектом подводная лодка должна состоять из прочного корпуса — стального цилиндра, помещенного внутрь легкого корпуса, изготовленного из стеклопластика. В средней части прочного корпуса имеется рубка цилиндрической формы с входным люком, крышка которого открывается специальным приводом как снаружи, так и изнутри прочного корпуса. Рядом с люком располагается верхний рубочный иллюминатор, немного ниже — иллюминатор штурмана для навигационных целей. В носовой части прочного корпуса имеются еще два обзорных иллюминатора, один из которых направлен вперед, а другой вперед и вниз.

В наружном корпусе из стеклопластика предполагается установить гидронасос, работающий от электродвигателя. Насос подает струю воды в гидродвигатель и тем самым приводит во вращение винты горизонтального и вертикального хода. В легком корпусе должны быть размещены ловушка для рыб и морских животных, гарпунная пушка для охоты на крупных зверей и пружинное ружье для боя рыб. В корпусе из стеклопластика будет находиться также постоянный балласт, состоящий из твердой дроби, и аварийный балласт в виде отдаваемого стального киля весом 350 кг.

По обоим бортам прочного стального корпуса расположены балластные цистерны. Для всплытия они продуваются сжатым воздухом, при погружении заполняются забортной водой.

Для сбора проб с грунта предусмотрены два манипулятора, управляемые с помощью электромагнитных золотников. Собранные манипуляторами образцы складываются в специальный ящик, укрепленный с правого борта ГА-2000.

Управляют подводной лодкой штурман и наблюдатель, сидящие в удобных самолетных креслах. Для лучшего обзора через нижнюю группу иллюминаторов наблюдатель может лечь, сложив свое кресло, возле которого находятся киноаппарат и кнопки управления манипуляторами, прожекторами и лампой-вспышкой. Кроме того, здесь же предполагается разместить эхограф, телефон подводной связи, указатели скорости хода, репитер гирокомпаса и другие приборы. В прочном корпусе будет находиться также аккумуляторная батарея, являющаяся источником тока для освещения и питания двигателей мощностью по 1,5 квт каждый.

Научно-исследовательская подводная лодка «Алюминот» строится фирмой «Рейнолдс Метал Компани» (США) (рис. 28).

Рис. 28. Модель подводной лодки «Алюминот».

Ее основные данные: полное подводное водоизмещение 63 м3, рабочая глубина погружения 4580 м, наибольшая длина 15,4 м, наибольшая ширина 2,44 м (без боковых килей), внутренний диаметр прочного корпуса 2,14 м, внутренний объем прочного корпуса 40 м3, вес корпусных конструкций 43,7 т, время нахождения подводной лодки в подводном положении: рабочее 36 ч, в аварийных случаях 72 ч, максимальная скорость подводного хода 5 уз, радиус действия около 100 миль. Доставка подводной лодки к месту погружения осуществляется на обеспечивающем судне или буксировкой со скоростью до 10 уз при волнении моря не более 4 баллов. Экипаж «Алюминот» — два наблюдателя и штурман-рулевой.

Прочный корпус подводной лодки изготовляется из листов стали толщиной 150 мм в форме цилиндра со сферическими концевыми переборками. Отдельные секции корпуса соединяются болтами; для обеспечения непроницаемости стыки секций склеиваются специальным клеем. В целях исключения коррозии на стальные конструкции корпуса наносится тонкий слой специального алюминиевого сплава, затем их поверхности грунтуют и окрашивают.

Для уменьшения поперечной качки на подводной лодке устанавливаются боковые кили. Маневрирование в вертикальной плоскости будет осуществляться с помощью кормовых горизонтальных рулей.

В качестве движителей «Алюминот» используются три винта: два горизонтальных и один вертикальный. Последний служит для регулирования скорости всплытия и погружения, а также для обеспечения остановки подводной лодки на любой промежуточной глубине (рис. 29).

Рис. 29. Продольный разрез подводной лодки «Алюминот»: 1 — съемное ограждение над кормовым люком; 2 — надувной спасательный плот; 3 — баллоны со сжатым воздухом; 4 — поглотитель углекислоты; 5 — винт для удержания глубины; 6 — научное оборудование; 7 — иллюминаторы; 8 — носовая дифферентная цистерна; 9 — научное оборудование; 10 — кормовая дифферентная цистерна; 11 — ввод кабеля; 12 — кормовая секция с гребным электродвигателем; 13 — гребной винт; 14 — сбрасываемый свинцовый киль; 15 — рундуки; 16 — кислородные баллоны; 17 — аккумуляторная батарея; 18 — уравнительная цистерна; 19 — распределительный щит; 20 — центральный пост; 21 — гидроакустическая станция; 22 — трюмная помпа; 23 — зарядный щит; 24 — рабочий стол.

Приводами к винтам являются три электродвигателя мощностью по 5 л. с., размещенные вне прочного корпуса в специальных контейнерах, заполненных кремнийорганической жидкостью. Через расширительную цистерну контейнеры постоянно сообщаются с забортной водой. Расположение гребных электродвигателей вне прочного корпуса дает возможность сократить его объем и избавляет от необходимости обеспечивать уплотнение в местах прохода гребных валов. В качестве источника электроэнергии намечается использовать серебряно-цинковую батарею, состоящую из двух групп по 154 элемента в каждой, общим весом около 2,8 т.

«Алюминот» имеет три вида балласта: водяной (1,35 т), принимаемый в килевую часть легкого корпуса; твердый в виде стальной дроби (1,8 т), находящийся в бортовых цистернах, и сбрасываемый свинцовый киль (3,2 т). Продувание водяного балласта рационально только на глубинах менее 1450 м. Поэтому для всплытия с больших глубин используется вертикальный винт, сбрасывается дробь, удерживаемая электромагнитом, и в аварийных случаях для обеспечения экстренного всплытия отдается свинцовый киль. Время аварийного всплытия с глубины 4580 м 22 мин.

Для наблюдения прямо по курсу подводной лодки и вниз имеются иллюминаторы. Предусмотрена также установка гидролокатора с излучателями, направленными вперед, вверх и вниз, подводного телевизора, мощных осветительных ламп, средств надводной и подводной связи и различного научного оборудования общим весом около 2 т. Для взятия проб грунта и производства подводных работ устанавливается манипулятор.

Экспериментальная подводная лодка «Долфин», постройка которой начата в 1962 г. в Портсмуте (США), предназначается для участия в работах, связанных с созданием боевых глубоководных подводных лодок, выполнения океанографических исследований и использования в качестве движущейся цели при проведении противолодочных учений.

Длина «Долфин» 61 м, диаметр корпуса 5,5 м, предполагаемая глубина погружения не менее 1200 м. Корпус подводной лодки цилиндрической формы со сферическими концевыми переборками, изготовляется из стали с пределом текучести 7000–7700 кг/см2. Для движения «Долфин» предполагается использовать обычную дизель-электрическую энергетическую установку.

По данным зарубежной печати, постройка подводной лодки должна быть закончена в 1964 г.

Научно-исследовательская подводная лодка «Олвин» строится компанией «Дженерал Милз» (США) по заказу океанографического института в Вудс-Холле (рис. 30).

Рис. 30. Научно-исследовательская подводная лодка «Олвин».

Длина подводной лодки 6,1 м, вес около 10 т, максимальная скорость хода 6 уз, радиус действия 30 миль, автономность 24 ч, предполагаемая глубина погружения не менее 1850 м, экипаж 2 человека, вес научно-исследовательской аппаратуры более 500 кг.

Прочный корпус лодки с толщиной листов обшивки 30 мм размещается внутри легкого корпуса и имеет сферическую форму. «Олвин» будет иметь три винта: один для движения в горизонтальной плоскости и два для движения в вертикальной плоскости. Приводами к винтам служат электродвигатели, обладающие следующей мощностью: электродвигатель кормового винта 15 л. с., электродвигатели вертикальных винтов по 7,5 л. с. Источник электроэнергии — аккумуляторная батарея.

Регулирование плавучести и всплытия подводной лодки осуществляется с помощью балласта — стальной дроби, удерживаемой в бункере электромагнитом. Для получения положительной плавучести при аварийном всплытии предусмотрена отдача дифферентных цистерн, заполненных рабочей жидкостью — ртутью.

Для выполнения некоторых простых подводных работ на подводной лодке устанавливается манипулятор.

Малая научно-исследовательская подводная лодка «Сипан-IV», проект которой разработан компанией «Дженерал Милз» (США), рассчитана на глубину погружения 1830 м и продолжительность пребывания под водой до 12 ч. Проектный вес «Сипан-IV» 5,7 т, полезная нагрузка 91 кг, экипаж 2 человека, энергетическая установка— электродвигатель, работающий от аккумуляторной батареи.

По данным зарубежной прессы, в США в ближайшем будущем предполагают довести глубину погружения научно-исследовательских подводных лодок до 5500 м. Ведутся также работы по проектированию и строительству малых подводных лодок с автоматическим управлением.

Малая исследовательская подводная лодка «Порпоиз» с автоматическим управлением, проектируемая в США, предназначается для измерения температуры воды на различных глубинах (рис. 31).

Рис. 31. Научно-исследовательская автоматическая подводная лодка «Порпоиз».

Ее длина 3,7 м, диаметр корпуса 0,533 м.

Перед погружением «Порпоиз» спускают с корабля-носителя на воду, запускают двигатель и заполняют водой балластные цистерны. После достижения заданной глубины цистерны автоматически продуваются и подводная лодка всплывает на поверхность.

Научно-исследовательская подводная лодка «Дениза» французского конструктора Жака Моллара создана по идее известного французского исследователя глубин Жака Ива Кусто (рис. 32, 33, 34).

Рис. 32. «Ныряющее блюдце» Кусто под водой.

Рис. 33. «Ныряющее блюдце» поднимают на французское исследовательское судно «Калипсо».

Рис. 34. Расположение оборудования и экипажа в «ныряющем блюдце» (стрелкой показан фотоаппарат, которым был сфотографирован зеркальный шар, отражающий внутренность «ныряющего блюдца»).

Она предназначена для изучения рельефа дна, установки и обслуживания океанографической аппаратуры, сбора образцов грунтов и воды, осмотра подводных кабелей и трубопроводов.

«Дениза» способна погружаться на глубину 300 м и находиться на этой глубине в течение 24 ч, так как на это время рассчитан бортовой запас кислорода, предназначенный для дыхания экипажа, состоящего из двух человек.

Подводную лодку «Дениза» иногда называют «ныряющим блюдцем», так как по своему внешнему виду она напоминает два наложенных одно на другое блюдца диаметром около 3 м и общим весом около 3,5 т. Ее прочный корпус изготовлен из стали, легкий — из стеклопластика. Подводная лодка не имеет больших балластных цистерн; плавучесть ее регулируется твердым балластом, а также приемом и откачкой забортной воды из специальной балластной цистерны малых размеров. Быстрое всплытие осуществляется отдачей части твердого балласта. Для изменения дифферента подводной лодки перегоняют 75 кг ртути из одного цилиндра в другой давлением масла. Время перегонки ртути 2 сек.

Значительная часть оборудования «Денизы», в том числе электромотор, насос, аккумуляторная батарея, расположена вне прочного корпуса. Подобное размещение позволило уменьшить размеры прочного корпуса и обезопасить экипаж от вредных и взрывоопасных газов, выделяемых аккумуляторами. При проведении испытаний лодки дважды происходили взрывы аккумуляторной батареи, но люди и оборудование не пострадали.

Для движения подводной лодки применен водометный движитель, состоящий из насоса и двух сопел, приводимый в действие электродвигателем мощностью 2 л. с. Сопла сделаны поворотными, и это дало возможность избавиться от рулей. При повороте сопел создается упор водяной струи в нужном направлении, и подводная лодка совершает поворот вправо или влево, движется вперед, назад, вверх или вниз.

Для наблюдения и кино- и фотосъемки в корпусе лодки прорезаны два иллюминатора. На «Денизе» имеются навигационное оборудование, установка для очистки воздуха, фото- и кинокамеры, лампа-вспышка для освещения при фотографировании и киносъемке, гидролокатор, манипулятор типа «механическая рука» для взятия проб грунта, растений и производства некоторых несложных работ.

После серии полуторагодичных испытаний со спусками на тросе без людей, затем без троса с людьми Жак Ив Кусто заявил, что лодка превзошла все ожидания проектировщиков и строителей, прекрасно управляется и даже планируется погружение в ней подо льдами Арктики.

Для обеспечения погружений «Денизы» с участием Ж. Кусто было спроектировано и построено специальное надувное судно-носитель «Амфитрида». Длина этого судна 19,8 м, ширина 8,8 м, вес 6 т, запас топлива на 2000 миль пути, для движения используются водометные движители. Экипаж судна состоит из пяти человек. Корпус «Амфитриды» сделан из нейлоновой оболочки, наполняемой сжатым воздухом, палуба — из стеклоткани и пенопласта. В средней части судна имеется рама из алюминиевого сплава для размещения «Денизы». Чтобы судно не утонуло при повреждении корпуса, последний разделен переборками на девять изолированных один от другого отсеков.

Научно-исследовательская подводная лодка «Дипстар», строящаяся фирмой «Вестингауз Электрик Корпорейшн» (США), является дальнейшим развитием подводной лодки «Дениза» (рис. 35).

Рис. 35. Подводная камера «Дипстар».

Предельная глубина погружения этой лодки 3650 м. Ее прочный корпус выполнен в виде сферы диаметром 1,8 м, изготовленной из высококачественной легированной стали толщиной 32 мм (рис. 36).

Рис. 36. Размещение экипажа в подводной камере «Дипстар».

Длина легкого корпуса, имеющего форму крыла, 5,2 м, ширина 3,7 м, высота 2,4 м. Общий вес подводной лодки 7 т, дальность плавания 20 миль, автономность по емкости аккумуляторной батареи 24 ч, запас средств регенерации обеспечивает пребывание под водой экипажа из трех человек в течение 48 ч.

Для предотвращения попадания воды в прочную сферу через входной люк при нахождении подводной лодки в надводном положении надувается резиновый тубус, обычно сложенный вокруг люка. Быстрое всплытие в случае аварии обеспечивается отдачей твердого балласта и части оборудования. Для подачи сигналов бедствия под водой могут использоваться гидроакустические станции, а над водой радиостанция и пиротехнические средства.

Движение лодки со скоростью 3,5 уз обеспечивается движительным комплексом, состоящим из двух электродвигателей переменного тока, в роторы которых вмонтированы гребные винты, а статоры имеют форму насадок. Маневрирование подводной лодки осуществляется за счет изменения числа оборотов электромоторов и поворота насадок. «Дипстар» сможет управляться как рулевым, так и автопилотом. Вся аппаратура и приборы питаются от аккумуляторной батареи, установленной в носовой части подводной лодки; гребные электродвигатели получают питание от отдельной аккумуляторной батареи через специальный преобразователь.

«Дипстар» проектируется снабдить совершенной навигационной и научно-исследовательской аппаратурой, в том числе гирокомпасом, эхолотами, телевизионной установкой, радиостанцией, кинокамерой и т. д. Для производства подводных работ предусматривается установка манипуляторов с длиной захватов около двух метров.

Научно-исследовательская подводная лодка «Куро-Сио» построена в Японии в 1960 г. для проведения биологических исследований и бурения морского дна. В настоящее время передана для проведения подводных исследований университету в Хоккайдо.

Основные данные «Куро-Сио»: длина 11,8 м, ширина 2,2 м, диаметр прочного корпуса 1,5 м, водоизмещение без учета веса кабеля и экипажа 12,5 т, время пребывания в подводном положении около 24 ч, скорость хода под водой 2 уз, глубина погружения 200 м, экипаж 4 человека.

Прочный корпус подводной лодки, рассчитанный на разрушающее давление 42 кг/см2, разделен на два отсека: носовой, в котором располагается экипаж, и кормовой, где установлены гребной электродвигатель мощностью 3,7 квт, перекачивающий насос и вентилятор мощностью 100 вт. Собственно прочный корпус длиной 5,6 м состоит из носовой сферической переборки, цилиндрической части, конусообразного кормового окончания и прочной рубки. В прочном корпусе и рубке имеется 16 иллюминаторов для наблюдения, фото- и киносъемки.

«Куро-Сио» приспособлена для покладки на грунт. Для этой цели на ее корпусе смонтирована специальная металлическая рама, отдаваемая при аварийном всплытии. Смягчение ударов во время покладки на грунт и удержание неизменного расстояния до него при плавании над дном обеспечиваются цепью-гайдропом длиной 3 м, диаметром 30 мм и весом 50 кг. Гайдроп наматывается на барабан, установленный на корпусе лодки и удерживаемый с помощью стального троса.

Оригинально решена проблема подачи электроэнергии на подводную лодку. Электрический ток напряжением 400 в подается на движущуюся подводную лодку с идущего позади обеспечивающего судна по кабелю длиной 600 м, диаметром 36 мм и весом в воздухе 2,05 кг/м, а в воде 0,75 кг/м. Кроме токопередающего канала, в кабель включены каналы телевизионной и телефонной связи, а также несущий стальной трос диаметром 9 мм. На «Куро-Сио» установлен понижающий трансформатор; получение постоянного тока обеспечивается применением селеновых выпрямителей.

Особенностью «Куро-Сио» является то, что для всплытия вода из внутренних цистерн откачивается за борт насосом и лишь после всплытия в надводное положение производится продувание наружных балластных цистерн сжатым воздухом, подаваемым с обеспечивающего судна.