6.2.11. СИСТЕМЫ ВОЗБУЖДЕНИЯ И АВТОМАТИЧЕСКИЕ РЕГУЛЯТОРЫ ВОЗБУЖДЕНИЯ

We use cookies. Read the Privacy and Cookie Policy

6.2.11. СИСТЕМЫ ВОЗБУЖДЕНИЯ И АВТОМАТИЧЕСКИЕ РЕГУЛЯТОРЫ ВОЗБУЖДЕНИЯ

Синхронная машина, система возбуждения и автоматический регулятор возбуждения представляют собой единый комплекс, обеспечивающий эффективную работу генераторов и двигателей. На протяжении длительного времени в качестве возбудителя крупных синхронных машин использовались коллекторные генераторы постоянного тока. Они обычно размещались на общем валу с главной машиной. Реже возбудитель входил в состав отдельного агрегата, состоящего из генератора и асинхронного двигателя. Коллекторы генераторов постоянного тока требовали систематического ухода. Генераторы имели значительную электромагнитную инерционность.

В послевоенные годы в нашей стране начались пионерские работы по использованию управляемых вентилей вместо механических коммутаторов-коллекторов. Сначала исследования проводились на лабораторных установках, а затем были созданы и проверены в эксплуатации опытно-промышленные ионные возбудители. В Ленэнерго такая установка была выполнена для гидрогенератора мощностью 33 MB?А Нижнесвирской ГЭС. Разработка и испытания проходили под руководством И.А. Глебова и С.Ф. Зонова. Авторство и руководство в создании и испытании опытно-промышленной системы ионного возбуждения турбогенератора мощностью 3 МВт на ТЭЦ № 7 Мосэнерго принадлежат Ю.А. Шмайну. Опытно-промышленная установка гидрогенератора мощностью 55 МВт для Рыбинской ГЭС была создана и испытана с участием В.Я. Масольда. В первых двух установках использовались ртутные вентили — игнитроны, а в третьей — откачные ртутные вентили. В первой и третьей установках выпрямители подключались к вспомогательным синхронным генераторам, а во второй установке — к трансформатору, получавшему питание от сети.

После проведения всесторонних испытаний и накопления опыта эксплуатации в 1957–1967 гг. начались разработка и создание систем ионного возбуждения для мощных гидрогенераторов ряда ГЭС (Волжские, Братская, Нурекская, Усть-Илимская, Красноярская, Саяно-Шушенская, Ингушская, Капчагайская, Саратовская, Кременчугская, Асуанская) и для турбогенератора мощностью 30 МВт ТЭЦ-16 Мосэнерго, а также для мощных синхронных компенсаторов (75 и 100 MB?А).

В связи с отсутствием в то время тиристоров выпрямители создавались на основе ртутных вентилей производства завода «Уралэлектротяжмаш». Их номинальный ток составлял 500 А, а напряжение 2500 В. В системах ионного возбуждения гидрогенераторов применялись вспомогательные синхронные генераторы. Они размещались между крестовиной и активной частью гидрогенератора. Их особенностью является то, что они имеют большой диаметр и малую длину. Так, например, наружный диаметр генератора Волжской ГЭС в районе г. Самары равен 850 см, а длина его сердечника 24 см.

Вспомогательные синхронные генераторы были разработаны и созданы на заводе «Электросила».

В связи с высокой кратностью форсирования (предельное напряжение возбуждения равно четырехкратному значению номинального напряжения) и практически безынерционным действием управляемых вентилей был достигнут наиболее высокий уровень динамической устойчивости машин и линий электропередачи.

Наряду с разработками систем ионного возбуждения для гидрогенераторов велись разработки систем ионного возбуждения для синхронных компенсаторов, которые были применены для подстанций на приемном конце линий электропередачи главным образом напряжением 500 кВ.

Широкое внедрение систем возбуждения с управляемыми преобразователями вместо электромашинных возбудителей было осуществлено впервые в мире в нашей стране. В дальнейшем переход на системы возбуждения с управляемыми вентилями был сделан и в зарубежной практике электромашиностроения.

Наибольший вклад в реализацию нового важного технического направления внесли И. А. Глебов (разработка теории, исследования на опытно-промышленной установке и на электродинамической модели); Е.М. Глух, М.А. Смирнитский, Г.В. Чалый, Ю.А. Шмайн, Е.Л. Эттингер (разработка, испытания и исследования на промышленных установках); А.И. Казанцев, Л.С. Флейшман (разработка и создание оборудования); В.Я. Масольд (наладочные работы и испытания на опытно-промышленной установке). Всем указанным специалистам была присуждена Государственная премия СССР за 1968 г.

После освоения полупроводниковых вентилей дальнейшее развитие систем возбуждения гидрогенераторов, турбогенераторов, синхронных компенсаторов и крупных синхронных машин проходило на основе использования кремниевых тиристоров и диодов.

Одна из первых и самых крупных тиристорных систем возбуждения гидрогенераторов была смонтирована на Красноярской ГЭС. Разработка системы была сделана ВНИИэлектромашем совместно с производственным объединением «Уралэлектротяжмаш». Ее внедрение было осуществлено в 1976 г. при самом активном участии персонала ГЭС во главе с В.И. Брызгаловым. Мощность гидрогенератора равна 500 МВт, а вспомогательного синхронного генератора 7,65 MB?А. Наружный диаметр последнего составляет 840, а длина его сердечника 38 см. Для преобразователей применены тиристоры со средним током 330 А и классом напряжения 20 и более. Общее количество тиристоров 180, они имеют водяное охлаждение. Как и для ионной системы возбуждения, кратность форсирования составляет 4.

Самая мощная тиристорная система возбуждения турбогенератора относится к машине мощностью 800 МВт и частотой вращения 3000 об/мин. Здесь возбудительно-вспомогательный турбогенератор мощностью 6 МВт устанавливается в своих подшипниках, роторы главной и вспомогательной машин соединяются муфтой, кратность форсирования принимается равной 2.

Рассмотренные выше системы возбуждения являются независимыми, так как в них применяется вспомогательный синхронный генератор. В таких системах необходимо иметь тиристорные преобразователи и автоматические регуляторы возбуждения (АРВ) как для главной, так и для вспомогательной машины. Система возбуждения существенно упрощается, если перейти на схему самовозбуждения. В этом случае обмотка ротора получает питание от выпрямителя, подключенного ко вторичной обмотке выпрямительного трансформатора. Его первичная обмотка присоединяется к выводам генератора. Системы самовозбуждения стали все более широко применяться как для турбогенераторов, так и для гидрогенераторов.

Щеточно-контактный аппарат турбогенератора с частотой вращения 3000 об/мин надежно работает при токах до 5000 А. Поэтому с увеличением токов потребовалось создание бесконтактной или бесщеточной системы возбуждения. Для этой цели применяется синхронный генератор обращенного типа, у которого якорь вращается, а индуктор неподвижен. Обмотка якоря подсоединяется к вращающемуся выпрямителю, соединенному с обмоткой ротора турбогенератора.

Для бесщеточных возбудителей потребовались диоды, рассчитанные на большие центробежные ускорения. Специальное конструкторское бюро завода «Электровыпрямитель» (г. Саранск) с участием ВНИИэлектромаша разработало и создало диоды со средним током 500 А и повторяющимся напряжением 2000 В. Позднее были освоены диоды на ток 630 А и напряжение 2800 В. В 1972 г. для турбогенератора мощностью 300 МВт был применен трехфазный возбудитель с диодами на ток 500 А. Полученный опыт был распространен еще на четыре турбогенератора мощностью по 300 МВт. Вся эта работа проводилась ВНИИэлектромашем и объединением «Электросила». Энергетическим институтом им.

Г.М. Кржижановского и харьковским заводом «Электротяжмаш» для турбогенератора мощностью 200 МВт с многофазным возбудителем под руководством Г.А. Ковалькова и B.C. Кильдишева были применены диоды с током 500 А. Такие же диоды были применены и для двух многофазных бесщеточных возбудителей турбогенераторов мощностью 500 МВт завода «Электротяжмаш», установленных на Воронежской АЭС. Позднее машины этого класса комплектовались трехфазными возбудителями и диодами с током 630 А и выполнялись в объединении «Электросила». По заказу Ленинградской АЭС в 1978 г. была завершена поставка четырех бесщеточных возбудителей для турбогенераторов мощностью 500 МВт.

В 1980 г. был создан самый мощный в мире двухполюсный турбогенератор на 1200 МВт для Костромской ГЭС, который имеет номинальные значения тока возбуждения 7800 А и напряжения 500 В. В этом случае единственно возможное решение состояло в применении бесщеточной системы возбуждения. Для турбогенераторов мощностью 1000 МВт с током возбуждения 7000 А и напряжением 500 В для атомных электростанций были также применены бесщеточные возбудительные системы. Первый такой турбогенератор был введен в эксплуатацию в 1981 г., а всего на электростанциях сейчас работают 17 аналогичных машин. При их создании весь комплекс исследований и разработок по совместным проектам ВНИИэлектромаша с объединением «Электросила» был выполнен под руководством В.Ф. Федорова и В.К. Воробья.

В 1978 г. впервые в мировой практике была введена в эксплуатацию тиристорная бесщеточная система возбуждения для турбогенератора мощностью 300 МВт с частотой вращения 3000 об/мин на Киришской ГЭС.

Как указано выше, бесщеточные возбудители были применены для синхронных компенсаторов. В связи с большим синхронным индуктивным сопротивлением для получения большого значения реактивной мощности в режиме потребления кроме основного выпрямителя положительного возбуждения применяется выпрямитель отрицательного возбуждения.

Рис. 6.8. Бесщеточный возбудитель турбогенератора средней мощности

1 — полюс; 2 — якорь возбудителя; 3 — вращающийся выпрямитель; 4 — вал турбогенератора 

Во ВНИИэлектромаше разработана новая система статического тиристорного самовозбуждения с воздушным охлаждением для турбогенераторов мощностью от 60 до 220 МВт с широким использованием микропроцессорной техники. В этой системе имеется 100-процентное резервирование. Для меньшего диапазона мощностей (2,5–63 МВт) предложены упрощенная статическая тиристорная и бесщеточная системы (рис. 6.8). Последняя имеет консольное исполнение, благодаря чему она размещается в пространстве щеточно-контактного аппарата. Микропроцессорная техника, силовая часть, устройства управления, регулирования, защиты и сигнализации размещены в одном небольшом шкафу. Указанные системы возбуждения разработаны В.В. Кичаевым, В.М. Бобровым, Е.Н. Поповым и В.К. Воробьем и освоены в производстве.

Разработка статических систем возбуждения мощных синхронных двигателей велась в ЦКБ КЭМ и на заводе «Уралэлектротяжмаш» (И.Л. Остров, В.Б. Коваленко, Б.В. Яковчук). Были созданы возбудители серий ВТЕ и ТЕ на токи возбуждения до 320 А. Они нашли широкое применение и в настоящее время изготавливаются в АО «Привод», на Рассказовском заводе низковольтных аппаратов, Сафоновском электромашиностроительном заводе. На заводе «Уралэлектротяжмаш» были созданы системы возбуждения на токи 630–800 А (ответственный исполнитель Р.Г. Гольдин).

Наряду со статическими системами велись активные исследования и разработки по бесщеточным системам возбуждения. Один из первых образцов отечественных бесщеточных генераторов был изготовлен и испытан в ЦКБ КЭМ. Большой объем работ по созданию бесщеточных генераторов был выполнен также на заводе «Электросила», где были разработаны и освоены бесщеточные генераторы типа СБГД мощностью до 6300 кВт. ЦКБ КЭМ и Сафоновским электромашиностроительным заводом были созданы синхронные двигатели с бесщеточной системой возбуждения.

Большое значение для создания полупроводниковых систем возбуждения турбо- и гидрогенераторов, а также синхронных компенсаторов и крупных синхронных машин, имела трехтомная монография И.А. Глебова, посвященная физическим процессам, методам расчета и проектирования [6.46–6.48].

Строительство дальних электропередач, объединение отдельных энергосистем в единую энергосистему, рост мощностей агрегатов потребовали существенного повышения динамической и статической устойчивости оборудования. Это привело к необходимости создания АРВ, которые реагируют не только на отклонения режимных параметров, но и на их производные. Такие регуляторы получили название автоматических регуляторов возбуждения сильного действия (АРВ СД). Сама идея и ее техническое воплощение были предложены специалистами нашей страны. В дальнейшем АРВ СД вошли в практику и зарубежных стран.

На первом этапе (1952–1953 гг.) развития АРВ СД разработчики из пяти организаций [Всесоюзный научно-исследовательский институт электроэнергетики (ВНИИЭ), Всесоюзный электротехнический институт (ВЭИ), Институт автоматики и телемеханики АН СССР, Московский энергетический институт (МЭИ), Институт электродинамики АН УССР] представили свои регуляторы в МЭИ, где они прошли испытания на электродинамической модели. На втором этапе (1954–1955 гг.) испытания двух АРВ СД продолжались на электродинамической модели Института электромеханики (теперь НИИэлектромаш). Авторами их были Н.В. Позин (Институт автоматики и телемеханики АН СССР) и Г.Р Герценберг (ВЭИ).

Наиболее полную поддержку специалистов получило предложение Г.Р. Герценберга. Поэтому АРВ СД ВЭИ нашел широкое практическое применение. Г.Р. Герценберг за эту работу был удостоен Ленинской премии.

Наиболее эффективная работа АРВ СД получается при использовании первой и второй производных угла нагрузки. Но измерение угла очень сложно. Поскольку ток генератора приблизительно пропорционален углу, то в регуляторах сначала использовались первая и вторая производные тока. Позднее И.А. Орурком, В.Е. Каштеляном и Н.С. Сирым было показано, что отклонение частоты и ее первая производная пропорциональны первой и второй производным тока. Поэтому в современных АРВ СД исходная информация получается от напряжения генератора.

В настоящее время практически на всех тепловых и гидравлических электростанциях, а также на атомных электростанциях страны применяются АРВ СД. Они пригодны для работы со всеми типами систем быстродействующего возбуждения (статические тиристорные и бесщеточные системы). Эти АРВ характеризуются коэффициентами регулирования и наличием сигналов по производным режимных параметров, что позволяет совместно с системами быстродействующего возбуждения реализовать преимущества сильного регулирования возбуждения, т.е. обеспечить высокие пределы статической и динамической устойчивости генератора и интенсивное демпфирование качаний в послеаварийных режимах.

АРВ СД претерпели существенные изменения в связи с совершенствованием элементной базы. Масса регуляторов снизилась с 1100 кг при использовании магнитных усилителей до 40 кг в случае применения интегральных схем. Обстоятельные научные исследования позволили не только разработать АРВ СДП1 (АРВ СД на базе полупроводников П с использованием интегральных схем I), но и освоить его производство (руководитель работ Н.С. Сирый).

Цифроаналого-физический комплекс, созданный во ВНИИэлектромаше, является мощным инструментом разработки и отладки алгоритмов цифровых систем регулирования и управления, средством выбора оптимального сочетания аппаратной и программной частей систем. На его основе в последние годы начато решение научной проблемы по разработке и созданию цифрового регулятора (АРВ СДЦ).

Первый цифровой регулятор был создан во ВНИИЭМ в 1978 г. (В.Д. Ковалев, А.В. Фадеев). Затем было выполнено еще несколько регуляторов. Все они находятся в эксплуатации на электростанциях. Тем не менее на сегодняшний день проведенные в данной области работы следует рассматривать лишь как начальную стадию развития АРВСДЦ.

Во ВНИИэлектромаше разработан и освоен АРВ СД с использованием микропроцессорной техники (В.В. Кичаев, М.Л. Богачков). Автоматический регулятор сильного действия селективный (АРВ СДС) состоит из аналоговых блоков и микропроцессора. Наличие микропроцессора позволяет реализовать ряд новых функций: 1) контроль и диагностику состояния регулятора; 2) длительное хранение установок в памяти; 3) изменение установок с любой скоростью и высокой точностью; 4) определение приоритетов при выполнении команд от разных уровней управления; 5) связь с верхним уровнем управления.

В результате исследовательской работы для синхронных генераторов малой и средней мощности во ВНИИэлектромаше был разработан и освоен в производстве автоматический регулятор напряжения — АРН (А.А. Юрганов, В.А. Кожевников). Он предназначен для тиристорных систем самовозбуждения и бесщеточных возбудителей. В нем реализуется пропорционально-интегрально-дифференциальный закон регулирования по отключению напряжения с компаундированием по реактивному току и с введением для повышения устойчивости сигналов по первым производным напряжения статора и тока ротора, а также сигнала обратной связи с целью повышения быстродействия. Наряду с этим он дает сигнал на форсирование возбуждения при авариях, обеспечивает программное начальное возбуждение, делает возможным требуемое распределение реактивных мощностей без группового регулирования напряжения для параллельно работающих генераторов, позволяет иметь местное и дистанционное изменение установки, ограничивает минимальный ток возбуждения.

Выходное напряжение АРВ поступает к системе управления тиристорами. Эта система является одним из важнейших элементов возбудителей. На протяжении многих лет ведутся работы по ее усовершенствованию. В конечном счете системы управления должны в ближайшем будущем базироваться на микропроцессорных устройствах.

Данный текст является ознакомительным фрагментом.