Автоматические линии

We use cookies. Read the Privacy and Cookie Policy

Автоматические линии

В цехе завода еще издали бросается в глаза вытянувшийся в длину почти на 20 метров необычный станок. Но когда мы подойдем к нему ближе, то увидим, что это не один, а восемь агрегатных станков, выстроенных в линию. Они стоят сомкнутым строем, и те места в станках, где будет последовательно обрабатываться блок цилиндров двигателя грузового автомобиля ЗИС-150, соединены между собой длинной штангой, проходящей сквозь всю линию.

На штанге на равном расстоянии друг от друга расположены особые детали-захваты, которые называются «собачками». Головки станков оснащены сотнями сверл, разверток, метчиков и других инструментов; они размещены так, что точно войдут в многочисленные отверстия в теле блока и прямо сверху, и сбоку, и под углом для обработки наклонных отверстий. Над сквозной штангой образовался своего рода туннель, проходящий сквозь все восемь станков. Это будущий путь обрабатываемого блока.

У начала этого пути перед первым станком расположен пульт управления; около него — один человек, он наблюдает за тем, как работает вся линия, как действуют отдельные ее станки и устройства. Против входа в «туннель» уже приготовлены отливки блока, которые нужно обработать. {87}

Человек нажимает пусковую кнопку — и вся линия станков оживает. Сквозная штанга словно дернулась вперед, ее захваты включились в работу, один из них, первый в линии, зацепил и увлек за собой первый блок, точно поставил его на рабочее место в первой позиции линии, и тут же вся штанга подалась назад.

Зажимные приспособления мгновенно «вцепились» в изделие, надежно закрепили его на месте. А в это время точным, размеренным движением подались к поверхностям блока головки станков сверху и сбоку. Миг — и в изделие вошли многочисленные инструменты; проходят десятки секунд — инструменты сделали свое дело и отошли назад.

Снова дернулась вперед штанга. На этот раз она зацепила первый блок и переставила его дальше, в промежуток между двумя первыми позициями, и одновременно захватила второй блок, увлекла его на первую позицию.

Теперь следующий блок проходит через начальные операции, а первый как бы ожидает своей очереди попасть под инструменты второй позиции.

Еще раз протекают те же десятки секунд и еще раз рывком вперед штанга подает первый блок на вторую позицию, перемещает второй блок на промежуточную и, захватив третий блок, увлекает его под инструменты первой позиции. На этот раз в первом блоке уже рассверливаются наклонные отверстия и продолжается обработка прямых отверстий в боковой поверхности.

Затем штанга еще и еще раз совершает свои точные, размеренные движения — вперед и назад, вперед и назад — и каждый раз продвигает по линии первое изделие и включает в обработку новый, следующий блок.

А там, у пульта, советский человек—властитель линии станков — следит за тем, как включаются все новые и новые позиции.

Наконец, все они работают, даже последняя — восьмая. Еще около двух минут — и из туннеля линии выходит обработанный блок.

С того момента, когда это изделие поступило на первую позицию, были обработаны несколькими операциями десятки отверстий. 224 инструмента участвовало в работе. Изделие прошло путь в 17,2 метра.

И на всем этом пути ни разу не вмешалась рука человека. Но его творческая мысль, выраженная в автоматически действующих устройствах, управляла на {88} расстоянии работой десятков точных электрических приборов: магнитными пускателями, переключателями, промежуточными реле, реле времени. Двенадцать километров проводов связали между собой всю систему линии. Они не только разносили приказы с пульта управления, но и приносили туда и рисовали на экранчиках в виде световых сигналов своего рода отчеты станков об их работе, о перебоях, замедлениях, остановках.

Каждая позиция линии имеет три световых «контролера» — три электролампочки под тремя экранчиками. Одна доносит о работе головок, другая — о работе зажимных приспособлений, третья — о работе штанги и ее захватов на данном участке.

Вот головки включились в работу, подались к изделию — лампочка вспыхнула, «доложила» об этом, вот они отошли назад — лампочка погасла, «сообщила», что все в порядке. А если что-то случилось с механизмами, если головка не подается назад, тогда лампочка не погаснет, будет тревожно и настойчиво сигнализировать о неполадке. Так же работают и те лампочки, которые контролируют работу зажимных приспособлений и штанги.

Но ведь на линии восемь позиций, значит все время перед глазами рабочего у пульта управления будут мелькать и путаться 24 световых сигнала. От этого можно быстро устать и потерять способность разбираться во всем этом световом калейдоскопе.

Чтобы этого не случилось, на пульте предусмотрены еще три экранчика с тремя контрольными лампами Одна из них обслуживает головки всех позиций, другая — все зажимные приспособления, третья — все участки подающей штанги. И только эти три лампы, подавая сигналы, вспыхивают и гаснут. За тремя лампочками уже не трудно наблюдать.

Но вот одна из них, та, что «следит» за зажимом изделия, вспыхнула и... не погасла. Это значит, что где-то на линии недоработало зажимное приспособление — когда окончилась операция, оно не отпустило изделие, а это и застопорило всю работу.

А где же именно произошла неполадка? Чтобы узнать это, достаточно включить всю линию лампочек, контролирующих зажимные приспособления. Все они вспыхнут, кроме одной — той, которая связана с позицией, {89} где случилась неполадка, авария. Теперь рабочему точно известно, где на линии нужна его помощь.

Кончается смена, линию надо остановить. Это надо сделать так, чтобы все ее рабочие части (головки, зажимные приспособления, штанга) полностью закончили свои операции и вернулись в исходное, начальное, положение. А ведь в момент окончания смены все они могут оказаться где-то на разных участках своего рабочего хода, и нажатая на пульте кнопка может их так и остановить. Оказывается, нет, этого не случается.

Существует еще особое устройство, которое так срабатывает, что при остановке линии рабочий ход ее исполнительных частей, где бы в этот момент они не находились, продолжается до того, как они придут в свое начальное положение. Тогда наступает покой, линия «отдыхает» до новой команды с пульта, до нового нажима пусковой кнопки.

Так работает первая автоматическая линия для изготовления блоков цилиндров двигателя грузовых машин ЗИС-150. Именно первая, потому что всего их четыре.

На первой линии обрабатывались отверстия верхней и двух боковых поверхностей блока. Но ведь есть еще торцевые поверхности и в них тоже отверстия, которые надо обработать. Для этой цели служит вторая автоматическая линия. Она меньше первой, ее длина немного больше 7 метров.

Затем нужно обработать отверстие нижней поверхности блока. Это осуществляется на третьей линии, такой же длинной и сложной, как первая; в ней тоже работают 250 различных инструментов.

И, наконец, существуют еще так называемые «клапанные» отверстия, которые обрабатывает четвертая линия.

Каждая линия выпускает очередной блок через две минуты, а работают они одновременно. Непрерывной чередой двигаются блоки от одной линии к другой. Поэтому, после того как все четыре линии полностью загружены, через каждые две минуты с последней позиции четвертой линии выходит блок с полностью обработанными отверстиями. Весь путь, пройденный блоком, немного меньше 60 метров. Десятки блоков тесно следуют друг за другом на этом пути, проходя под остриями около 600 различных инструментов 45 головок. {90}

Раньше та же работа выполнялась на 22 разобщенных многошпиндельных агрегатных станках с 40 головками и на 20 универсальных вертикально и радиально-сверлильных станках. Для изготовления одного блока затрачивалось 75,5 человеко-минуты. Автоматические линии уменьшили это время почти в 10 раз и во столько же раз уменьшилось количество занятых рабочих — вместо 65 только 7.

Такие же высокопроизводительные автоматические линии станков создали советские станкостроители и для обработки головок двигателя трактора «СТЗ-НАТИ», блоков двигателей малолитражных автомобилей и других деталей.

Так передовой отряд советских инженеров-новаторов помог выполнению плана великих послевоенных работ, создав подлинные конвейеры точности. Так он дал новое, наиболее передовое решение давней задачи — упрощения и ускорения процесса обработки металла за счет решительного увеличения производительности орудий труда.

Конструкторам есть чем гордиться. Среди них много знатных людей — лауреатов Сталинской премии. Секрет их больших успехов — в постоянной неудовлетворенности достигнутым, в непрестанном стремлении улучшить уже сделанное, создать новое, еще более совершенное.

Для советских конструкторов автоматические линии, о которых мы рассказали, уже пройденный этап.

На них они учились, осваивали азбуку автоматических линий, накапливали опыт, уверенность, воспитывали в себе смелость технических дерзаний.

Уже родились и новые автоматические линии для обработки головки мотора. На одной линии протяженностью в 48 метров сплошной чередой выстроились 20 станков.

На этом длинном пути деталь несколько раз автоматически поворачивается, чтобы подставить под инструменты то одну, то другую свою поверхность. Когда последняя из обрабатываемых головок сойдет с последнего станка линии, за ней в очередь выстроятся 130 головок.

И каждые 3 минуты 15 секунд вслед за первой головкой будет сходить с этого «конвейера точности» следующее, полностью обработанное изделие, именно {91} полностью. Ведь в линиях «вчерашнего» дня обрабатывались только отверстия детали, а другие поверхности и плоскости оставались необработанными. Затем изделия (для окончательного их изготовления) уходили на другие станки, тратилось время, нужны были другие рабочие. А на новой линии фрезеруются плоскости, и головка уходит с линии совершенно готовой.

Получается так: на первый станок в начале линий подается «черная» заготовка будущей головки, а в конце линии с последнего станка сходит «чистая» законченная деталь, годная для сборки.

И еще одним удивительным и полезным свойством отличаются новые длинные линии. В одно и то же время они и едины и разобщены на участки. Ведь где-то на линии возможна неполадка, затор, остановка. Тогда соответствующий участок выключается, там идет устранение неполадок, а остальные участки, теперь уже разделенные, самостоятельно продолжают работать.

Пока линия в целом работала для каждого из ее участков, у промежутков между ними накопилось достаточно заготовок с соответствующей степенью обработки, и теперь каждый отрезок линии черпает детали из этого запаса, чтобы не терялось время, чтобы не уменьшалась производительность.

Эти линии значительно совершеннее и «умнее» старых. Советские конструкторы вложили в них много нового, поистине чудесного. Станки соединены трубами, в них электрические провода, а в маслопроводах — масло; оно сообщает движению исполнительных органов машин необходимую мягкость, плавность, точность — служит гибкой передаточной средой в системе автоматически действующих механизмов, а провода, словно живые нервы, мгновенно сигнализируют, выполнено ли рабочее движение, как оно выполнено и не случилось ли какой неполадки в электроаппаратуре.

Вот как выглядит одна из этих удивительных линий чудо-станков: ее начало — особый командный аппарат. Диспетчер, управляющий линией, только что нажал пусковую кнопку на пульте: теперь линия работает, детали одна за другой поступают на рабочие позиции.

Головки станков, подавшись вперед, сделали свое дело, электрические «нервы» донесли об этом и... командный аппарат производит то самое движение, которое {92} управляет следующей операцией. Пока головки не выполнят своей работы до конца, пока не сработают конечные выключатели, командный аппарат не сделает указанного движения — не пустит в ход очередных механизмов, инструментов.

Но неожиданно где-то «отказал» один из электроприборов, а ведь их на линии сотни. Надо быстро найти, где, какой электроприбор вышел из строя. И снова «электрические нервы» делают свое дело: на пульте управления световой сигнал указывает, на каком участке произошла заминка.

А на самом участке контрольный экран точно указывает номер того электроприбора, который надо исправить. Теперь неполадка устранена, линия снова работает. И вдруг стоп, на полном рабочем ходу линия остановилась.

Может быть, ее остановил рабочий, обслуживающий линию?

Нет, она остановилась сама, вернее, ее остановил командный аппарат. Оказывается, на одном из станков «отказал» инструмент, сверло. Электрический сигнал одновременно донес об этом на пульт управления и командному аппарату.

На световом экране пульта появилось указание, на каком именно станке сломалось сверло, и командный аппарат остановил линию. Если он этого не сделает, обработка деталей будет продолжаться, но... в обломок инструмента, застрявший в отверстии, будут упираться и ломаться инструменты на следующих позициях; кроме того, сверло одного станка вовсе выключится из процесса обработки. В результате во всех головках будет нехватать одного отверстия. Придется обрабатывать это отверстие отдельно на других станках и потратить много дополнительного времени. А в нашем случае затрачивается лишь время на остановку линии и смену сломавшегося инструмента. Даже недопустимое затупление какого-нибудь основного инструмента повлечет за собой автоматическую остановку линии и мгновенную сигнализацию, где следует искать «виновника» промедления.

Все это — достижения, которых еще нет за рубежом нашей страны. Советские инженеры — творцы автоматических линий еще раз опередили западных станкостроителей. {93}

Несколько лет назад передовые станочники выявили еще один богатый, многообещающий источник значительного увеличения производительности своих рабочих машин-станков. Они усомнились в установленных справочниками низких пределах скорости резания металла и стали смело, дерзко их увеличивать. Они быстро доказали, что умело приспособленный инструмент из твердых сплавов отлично выдерживает новые, намного более высокие скорости. Но... их станки были рассчитаны на малые скорости — в 30—40 метров в минуту, поэтому и мощность электродвигателей была небольшой — всего лишь от 1,5 до 10—11 киловатт.

Станочники-скоростники своими успехами доказали, что необходимо увеличить мощность двигателей у старых станков и создавать новые станки со значительно более мощными двигателями — до 20 и больше киловатт.

В старых станках рабочие шпиндели вращались со скоростью до трех-четырех сотен оборотов в минуту, а в новых они должны были ускорить свое движение, если это понадобится, даже до двух-трех тысяч оборотов в минуту — в семь-восемь раз.

Но при такой высокой скорости части станка, сконструированного по-старинке, начали бы вибрировать и это расстраивало бы наладку и всю работу машины. Пришлось конструкторам-станочникам установить все причины возникновения вибраций, тщательно их изучить, а затем — устранить. В свое время именно советские инженеры-машиностроители первые в мире высоко подняли науку о резании металлов и исследовали явления вибраций в станках. На этой основе и удалось нашим станкостроителям так изменить и улучшить конструкции советских станков, чтобы они приобрели новое свойство — устойчивость против вибраций.

Так практика новаторов-скоростников на старых улучшенных станках подсказала ученым и инженерам новые научно-технические идеи в области станкостроения, открыла им новые пути для совершенствования металлообработки, помогла создать еще более производительные станки. А работая на этих станках, новые и новые отряды новаторов, не успокаиваясь на достигнутом, упорно, настойчиво и смело ищут и находят новые источники еще более высокой производительности станков. {94}

В этом рабочем и творческом единении новаторов; производства и инженеров-станкостроителей, в непрерывном обмене между ними своими достижениями, в совместном, дружном решении труднейших научных и технических задач и кроется основная и замечательная особенность всей советской техники, в том числе и станкостроительной. Она, эта особенность, — результат прямых указаний партии и товарища Сталина о путях развития советской техники, советского производства.

И именно единение людей науки и производства послужило основой для тех больших научных и технических достижений советского станкостроения, которыми по праву гордится наша страна, наш народ.

*  *  *

Скорость, производительность — это первое требование к станкам. Но это еще не все. Возьмем, к примеру, двигатель самолета, трактора — все это точно работающие машины. Их детали работают в строго рассчитанном движении сочленений; они должны быть поэтому и точно изготовлены. Часто бывает, что поверхности этих деталей должны быть обработаны с очень высокой степенью чистоты. И это второе требование к станкам — точность размеров обрабатываемых изделий, доходящая до микрона, до тысячных долей миллиметра.

Так, например, существуют в наши дни подшипники в машинах и приборах малых размеров, в которых вращающийся вал делает около 20 000 оборотов в минуту. В последние годы стали применять для таких машин подшипники с так называемой «газовой смазкой» — это значит, что вал вращается как бы в воздухе. Зазор между валом и подшипником в таких конструкциях достигает всего нескольких тысячных долей миллиметра. Легко себе представить, с какой разительной точностью должны быть изготовлены вал и подшипник, чтобы самые микроскопические неровности не «съели» этот тончайший зазор. Ведь стоит ошибиться всего лишь на 1—2 тысячных миллиметра, сделать вал «полнее» на такую величину или внутренний диаметр подшипника меньше, и зазор уменьшится настолько, что начнется «заедание» вала в подшипнике, и машина или прибор остановится, произойдет авария. {95}

Чтобы точно изготовить деталь, необходимо уметь с заданной степенью точности определять ее размеры. Наши станочники умеют управлять сверхпроизводительными точными станками и так же быстро и точно проверять размеры изделий.

Автоматическая линия станков для обработки блока цилиндров двигателя грузового автомобиля

Но существует еще одна, не менее важная причина, требующая высокой производительности и точности изготовления деталей машин. Нередко отказывает какой-либо из механизмов машины: то ли деталь повреждена, то ли износилась в работе. Машина — автомобиль, трактор — замерла, перестала «жить». Ее нужно вернуть к 96

жизни, но сделать это так быстро, чтобы не было перебоя в ее работе, чтобы машина как можно скорее снова вошла в строй. Счет времени в таких случаях измеряется минутами. Как же быть? Неужели отвозить машину в ремонтные мастерские, где заново изготовят поврежденную деталь? Ведь на это нужны дни, в лучшем случае — часы. Но... тут же извлекается ящик с запасными частями. Быстро и четко разбирается машина. Новая деталь без какой-либо дополнительной обработки — подгонки— занимает место поврежденной или износившейся, — машина ожила и снова работает.

Запасные части должны без подгонки заменять поврежденные детали — значит, эти части следует изготовлять со строгой точностью в заданных размерах. Они должны друг друга заменять, должны обладать свойством «взаимозаменяемости», как говорят техники.

На заводе, где машиностроители добиваются наиболее быстрой сборки машины, в ремонтных мастерских, где стремятся, как можно скорее привести машину в рабочее состояние, — везде, где пользуются большим количеством однородных машин, взаимозаменяемость деталей спасает эти машины от «смерти» или длительного омертвения.

Производство массовых партий взаимозаменяемых, точно изготовленных деталей машин — это и есть наиболее характерный признак современного машиностроения и основное назначение металлообрабатывающих станков.

Значит, точность измерения, умение определять размеры изделий с наивысшей точностью — вот еще одна сторона, и очень интересная, работы машиностроителя-станочника.

На долгом пути своего развития степень точности, которая достигалась при изготовлении изделий на металлообрабатывающих станках и определялась с помощью измерительных инструментов и приборов, все повышалась в соответствии с теми требованиями, которые предъявлялись наукой, техникой, промышленностью. В свою очередь успехи в области техники точных измерений способствовали дальнейшему развитию и совершенствованию науки, техники, промышленности, особенно металлообработки и машиностроения. Рассказу о главных усовершенствованиях в технике измерения, в металлообработке посвящена вторая часть этой книги.

{97}