Не подмажешь — не поедешь

We use cookies. Read the Privacy and Cookie Policy

Не подмажешь — не поедешь

Существует особая краска для судов, которая не высыхает полностью и тем самым предотвращает обрастание подводной части судна всевозможными морскими «прилипалами». Лакокрасочное отделение фирмы КОШМАР однажды изготовило партию настолько жидкой такой краски, что она медленно сползала по бортам судна и стекала с киля в воду. Этот счастливый случай побудил химиков фирмы заняться разработкой новых жидкотекущих красок, которые позволили бы автоматизировать дорогостоящие малярные работы. Наружную окраску зданий, например, можно производить при помощи распылительной трубы, проложенной вдоль конька крыши. Толстым густым слоем краска будет стекать по крыше в желоба, установленные по периметру, а оттуда — на стены здания. Специальные уловители отведут краску от окон здания; в конце концов стекающая со стен краска соберется в канавки, прорытые на земле вдоль стен, и после очистки вновь поступит на крышу.

Толстый, самозатягивающийся, непрерывно возобновляемый слой краски избавит домовладельцев от одной из самых сложных проблем. Подобно смоле или «дурацкой замазке»[7] (которые обладают подобной текучестью), краска не будет липкой на ощупь. В силу своей высокой вязкости такая краска не образует потеков, однако очищать и перекачивать ее будет непросто. Вероятно, придется подумать о возможности ее подогрева или разбавления каким-нибудь летучим растворителем. Несмотря на эти сложности, непрерывная «автоматизированная» окраска произведет революцию в эксплуатации не только жилых зданий, но и мостов, заводских цехов и даже морских судов. Памятуя о своем прежнем опыте, Дедал намерен создать защитную краску для судов с плотностью, равной плотности морской воды, чтобы краска не тонула и не всплывала. Краску, наносимую на нос корабля, поток воды будет увлекать к корме, откуда она будет перекачиваться для последующей регенерации. Такая краска произведет переворот в судостроении. Поверхностное натяжение делает слой краски гладким на молекулярном уровне; кроме того, благодаря своей вязкости защитный слой краски будет подавлять любые завихрения прежде, чем они успеют возникнуть. Суда, окрашенные подобной краской, станут двигаться, подобно дельфинам, в чисто ламинарной струе, не создавая никаких турбулентностей, что, вероятно, позволит снизить расходуемую мощность до десятой доли прежней мощности[8].

New Scientist, January 8, 1981

Из записной книжки Дедала

Какой вязкостью должна обладать жидко-текущая краска? Пленка жидкости с вязкостью ?, плотностью ? и толщиной x стекает по вертикальной стенке со средней скоростью v=?gx2/3?, т.е. ?=?gx2/3v. Нам нужно, чтобы краска стекала по стене дома высотой, скажем, 10 м за время от месяца до года (107 – 108 с), т.е. чтобы скорость стекания была v=10-6 – 10-7 м/с. При толщине пленки порядка 1 мм мы получим требуемую вязкость в пределах 104 – 105 Н•с/м2 — такая вязкость типична для смол и мягких восков.

При столь малой скорости поток, конечно, не может быть турбулентным. Однако, чтобы предотвратить ламинарные неоднородности потока (наплывы, потеки и т.д.), необходим соответствующий подбор поверхностного натяжения и тиксотропных свойств (способности к восстановлению после деформации).

Какого выигрыша следует ожидать от применения жидкотекущей краски, если она позволит судну двигаться в ламинарном, а не в турбулентном потоке? По данным Р. Дж. Моргана (Science News, 40, 1956, p. 96), поверхностное сопротивление в турбулентном потоке равно

RТП = 0,455A(lgRe)-2,58

а в ламинарном потоке

RЛП = 1,339A(lgRe)-0,5,

где Re – число Рейнольдса (Re=vl?/?), А — гидродинамическое сопротивление, равное 0,5?v? на 1 м? смоченной поверхности. Для небольшого судна длиной l = 20 м, идущего со скоростью v — 5 м/с в воде о плотностью ?=1000кг/м? и вязкостью ? = 10-3 Н•с/м?, получим RТП = 27 Н/м? и RЛП = 1,7 Н/м?. Хотя обе эти оценки занижены из-за пренебрежения потерями на образование волн, тем не менее, как мы видим, они отличаются не меньше, чем в десять раз!

Кстати, сотни квадратных метров этого вязкого слоя, текущего от носа к корме, находятся в контакте с морской водой, после чего краска собирается и очищается. Это создает идеальные возможности для химического извлечения ценных веществ из морской воды. Если ввести в состав краски подходящие реагенты, то в процессе обтекания судна она сможет собирать магний и бром, кобальт и ртуть (запасы которых истощаются), а возможно, и золото. Все эти вещества могут быть легко выделены затем в процессе фильтрации и регенерации краски. Концентрация редких элементов в морской воде невелика, но предоставляющаяся возможность обрабатывать тысячи тонн воды без особых затрат может оказаться экономически выгодной.