Легкое дыхание…

We use cookies. Read the Privacy and Cookie Policy

Легкое дыхание…

Чтобы избежать опасности азотного опьянения, подводники при погружении на большую глубину пользуются различными дыхательными смесями, которые позволяют спокойно работать в условиях, когда внешнее давление достигает десятков атмосфер. Дедал отмечает, что многие инертные газы имеют очень высокую плотность, причем с повышением давления плотность возрастает. По расчетам Дедала, при давлении в 50 атм плотность самого тяжелого из устойчивых инертных газов — ксенона равна плотности воды, так что человек вполне может в нем плавать. При этом давлении содержание кислорода, необходимое для дыхания, составляет всего 0,5 % — ощущения человека в такой среде одновременно напоминают погружение на глубину и свободное падение, но без риска утонуть или свернуть себе шею. Дедал предлагает соорудить огромные герметически закрытые куполы, снабдив их шлюзовыми и декомпрессионными камерами, и заполнить их сжатым ксеноном. Внутри такого купола человек сможет наконец-то удовлетворить свое врожденное стремление парить подобно птице[31]. Вода легче сжатого ксенона и поэтому станет всплывать наверх; таким образом, под сводом купола можно устроить озеро (заметьте, что брызги от брошенных в воду предметов полетят вниз!). Разница в плотности воды и сжатого ксенона настолько мала, что брызги и волны будут расходиться с восхитительной медлительностью. Как считает Дедал, его идея прежде всего открывает новую возможность «отдохнуть душой». Не исключено, что сеансы психоанализа, проведенные в этой полностью расслабляющей (в буквальном и переносном смысле) среде, помогут изможденным пациентам снять тяжесть с души и, быть может, даже откроют тайные истоки извечного стремления людей летать. Вспоминая о легендарных достижениях своего предтечи по части полетов, Дедал предполагает, что в основе общечеловеческого желания взлететь в воздух лежит наследственная память человечества о воспетом классиками подвиге.

Эта гипотеза также объясняет загадочное начало одного из малоизвестных вариантов поэмы Кольриджа:

Построил в Ксеноду Кубла

Чертог, ксенона полный храм…[32]

New Scientist, July 6, 1967

Из записной книжки Дедала

Похоже, что ксенон — единственный газ, плотность которого может превышать плотность воды: в критической точке (при температуре 16,6°C и давлении 58 атм) его плотность составляет 1154 кг/м3. Допустим, что при 25°C и 50 атм ксенон находится в истинно газообразном состоянии, а его плотность равна плотности воды, т. е. 1000 кг/м3. Можно ли дышать в такой среде? Чтобы концентрация кислорода (по массе) в ксеноне была равна содержанию кислорода в обычном воздухе, при 50 атм кислород должен составлять всего 0,5% объема смеси (Хе+O2) — наличие столь незначительного количества кислорода вряд ли окажет сильное влияние на ее физические свойства. Вязкость ксенона при давлении в 1 атм и температуре 20°C лишь немного превышает вязкость воздуха (2,3?10-5 и 1,8?1--5 Н•с/м2 соответственно); как известно, вязкость газа мало зависит от давления. Поэтому ксеноновой смесью будет дышать не труднее, чем обычной дыхательной смесью для глубоководного погружения, обладающей примерно той же вязкостью, что и воздух. В любом случае, если даже дыхание в подобных смесях затруднено, мы всегда имеем возможность слегка повысить концентрацию кислорода.

Любопытно также, что наш голос будет звучать в такой смеси очень «грубо» — в противоположность «голосу Буратино», который получается с помощью гелий-кислородной смеси. Дело в том, что скорость звука в гелии намного выше, чем в воздухе (970 и 331 м/с при 0°C соответственно), а скорость звука в ксеноне намного меньше (169 м/с), чем в воздухе. Таким образом, голос в ксеноне станет ниже на целую октаву.

Комментарий Дедала

На поверку оказалось, что высказанные здесь предположения довольно нестандартны. Профессор Дж. Килстра дает захватывающее описание (Scientific American, Aug. 1968, p. 66) опытов, в которых животные — а в одном случае и человек-доброволец — дышали насыщенными кислородом жидкостями (например, соленой водой). Основная проблема при этом возникает из-за высокой вязкости жидкостей (вязкость воды, к примеру, составляет 10-3 Н•с/м2, что в 60 раз превышает вязкость воздуха) и соответственно низкой скорости диффузии растворенных газов, отчего эффективность дыхательного газообмена снижается и затрудняется вдох-выдох. В то же время при использовании для дыхания жидкостей отпадает необходимость в значительном повышении давления: для насыщения соленой воды кислородом в количестве, достаточном для дыхания, необходимо давление всего в 5 атм, а некоторые фторуглеродные соединения содержат достаточное количество кислорода уже при атмосферном давлении.